Page 398 - v11i4
P. 398

International Journal of Bioprinting                                      Bioprinted vascular tumor model




               doi: 10.1007/s12195-020-00660-x                    doi: 10.1002/adma.201806899
            16.  Hurrell  T,  Ellero  AA,  Masso  ZF,  Cromarty  AD.   28.  Nie J, Gao Q, Xie CQ, et al. Construction of multi-scale
               Characterization and reproducibility of HepG2 hanging   vascular chips and modelling of the interaction between
               drop spheroids toxicology. Toxicol in Vitro. 2018;50:86-94.  tumours and blood vessels. Mater Horizons. 2020;7(1):82-92.
               doi: 10.1016/j.tiv.2018.02.013                     doi: 10.1039/c9mh01283d
            17.  Meenach SA, Tsoras AN, McGarry RC, Mansour HM, Hilt   29.  Gao G, Kim H, Kim BS, et al. Tissue-engineering of vascular
               JZ, Anderson KW. Development of three-dimensional lung   grafts containing endothelium and smooth-muscle using
               multicellular spheroids in air- and liquid-interface culture   triple-coaxial cell printing. Appl Phys Rev. 2019;6(4):041402.
               for the evaluation of anticancer therapeutics.  Int J Oncol.      doi: 10.1063/1.5099306
               2016;48(4):1701-1709.                           30.  Duong V, Dang TT, Hwang CH, Back SH, Koo KI. Coaxial
               doi: 10.3892/ijo.2016.3376
                                                                  printing of double-layered and free-standing blood vessel
            18.  Costa EC, Gaspar VM, Coutinho P, Correia IJ. Optimization   analogues without ultraviolet illumination for high-volume
               of liquid overlay technique to formulate heterogenic 3D co-  vascularised tissue. Biofabrication. 2020;12(4): 045033.
               cultures models. Biotechnol Bioeng. 2014;111(8):1672-1685.     doi: 10.1088/1758-5090/abafc6
               doi: 10.1002/bit.25210
                                                               31.  Kwak TJ, Lee E. In vitro modeling of solid tumor interactions
            19.  Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de   with perfused blood vessels. Sci Rep-Uk. 2020;10(1): 20142.
               Boer J. Spheroid culture as a tool for creating 3D complex      doi: 10.1038/s41598-020-77180-1
               tissues. Trends Biotechnol. 2013;31(2):108-115.  32.  Ahn J, Kim D, Koo DJ, et al. 3D microengineered vascularized
               doi: 10.1016/j.tibtech.2012.12.003
                                                                  tumor spheroids for drug delivery and efficacy testing.
            20.  Habanjar O, Diab-Assaf M, Caldefie-Chezet  F, Delort L.   Acta Biomater. 2023;165:153-167.
               3D cell culture systems: tumor application, advantages, and      doi: 10.1016/j.actbio.2022.10.009
               disadvantages. Int J Mol Sci. 2021;22(22):12200.  33.  Dey M, Kim MH, Dogan M, et al. Chemotherapeutics and
               doi: 10.3390/ijms222212200
                                                                  CAR-T cell-based immunotherapeutics screening on a 3D
            21.  Gao W, Wu D, Wang Y, et al. Development of a novel and   bioprinted vascularized breast tumor model.  Adv Funct
               economical agar-based non-adherent three-dimensional   Mater. 2022;32(52):2203966.
               culture method for enrichment of cancer stem-like cells.      doi: 10.1002/adfm.202203966
               Stem Cell Res Ther. 2018;9(1):243.              34.  Ozturk MS, Lee VK, Zou HY, Friedel RH, Intes X, Dai
               doi: 10.1186/s13287-018-0987-x
                                                                  GH. High-resolution tomographic analysis  of  in vitro 3D
            22.  Jeong Y, Tin A, Irudayaraj J. Flipped well-plate hanging-  glioblastoma tumor model under long-term drug treatment.
               drop technique for growing three-dimensional tumors.   Sci Adv. 2020;6(10):eaay7513.
               Front Bioeng Biotechnol. 2022;10:898699.           doi: 10.1126/sciadv.aay7513
               doi: 10.3389/fbioe.2022.898699
                                                               35.  Hwang DG, Choi YM, Jang  J. 3D bioprinting-based
            23.  de Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl   vascularized  tissue models mimicking tissue-specific
               and Laponite bioink for 3D bioprinted organotypic tumor   architecture and pathophysiology for studies. Front Bioeng
               modeling. Biofabrication. 2023;15(4):045005.       Biotech. 2021;9:685507.
               doi: 10.1088/1758-5090/ace0db                      doi: 10.3389/fbioe.2021.685507
            24.  Wu L, Li H, Liu Y, et al. Research progress of 3D-bioprinted   36.  Nashimoto Y, Hayashi T, Kunita I, et al. Integrating perfusable
               functional pancreas and in vitro tumor models. Int J Bioprint.   vascular networks with a three-dimensional tissue in a
               2024;10(1):1256.                                   microfluidic device. Integr Biol-Uk. 2017;9(6):506-518.
               doi: 10.36922/ijb.1256                             doi: 10.1039/c7ib00024c
            25.  Singh S, Ray LA, Shahi Thakuri P, et al. Organotypic breast   37.  Velez C, Cheng K, Crosby C. Synthesis and Characterization
               tumor model elucidates dynamic remodeling of tumor   of  Gelatin  Methacryloyl:  Introducing  Chemistry  Students
               microenvironment. Biomaterials. 2020;238:119853.   to the Applications of Hydrogels in Medicine. J Chem Educ.
               doi: 10.1016/j.biomaterials.2020.119853            2024;101(3):1171-1179.
                                                                  doi: 10.26434/chemrxiv-2023-qbrh6
            26.  Zhou X, Nowicki M, Sun H, et al. 3D bioprinting-tunable
               small-diameter blood vessels with biomimetic biphasic cell   38.  Millik SC, Dostie AM, Karis DG, et al. 3D printed coaxial
               layers. ACS Appl Mater Inter. 2020;12(41):45904-45915.  nozzles for the extrusion of hydrogel tubes toward modeling
               doi: 10.1021/acsami.0c14871                        vascular endothelium. Biofabrication. 2019;11(4):045009.
                                                                  doi: 10.1088/1758-5090/ab2b4d
            27.  Meng FB, Meyer CM, Joung D, Vallera DA, McAlpine MC,
               Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic   39.  Siminska-Stanny J, Nicolas L, Chafai A, et al. Advanced
               models via reconstruction of tumor microenvironments.   PEG-tyramine biomaterial ink for precision engineering of
               Adv Mater. 2019;31(10):1806899.                    perfusable and flexible small-diameter vascular constructs

            Volume 11 Issue 4 (2025)                       390                            doi: 10.36922/IJB025180180
   393   394   395   396   397   398   399   400   401   402   403