Page 398 - v11i4
P. 398
International Journal of Bioprinting Bioprinted vascular tumor model
doi: 10.1007/s12195-020-00660-x doi: 10.1002/adma.201806899
16. Hurrell T, Ellero AA, Masso ZF, Cromarty AD. 28. Nie J, Gao Q, Xie CQ, et al. Construction of multi-scale
Characterization and reproducibility of HepG2 hanging vascular chips and modelling of the interaction between
drop spheroids toxicology. Toxicol in Vitro. 2018;50:86-94. tumours and blood vessels. Mater Horizons. 2020;7(1):82-92.
doi: 10.1016/j.tiv.2018.02.013 doi: 10.1039/c9mh01283d
17. Meenach SA, Tsoras AN, McGarry RC, Mansour HM, Hilt 29. Gao G, Kim H, Kim BS, et al. Tissue-engineering of vascular
JZ, Anderson KW. Development of three-dimensional lung grafts containing endothelium and smooth-muscle using
multicellular spheroids in air- and liquid-interface culture triple-coaxial cell printing. Appl Phys Rev. 2019;6(4):041402.
for the evaluation of anticancer therapeutics. Int J Oncol. doi: 10.1063/1.5099306
2016;48(4):1701-1709. 30. Duong V, Dang TT, Hwang CH, Back SH, Koo KI. Coaxial
doi: 10.3892/ijo.2016.3376
printing of double-layered and free-standing blood vessel
18. Costa EC, Gaspar VM, Coutinho P, Correia IJ. Optimization analogues without ultraviolet illumination for high-volume
of liquid overlay technique to formulate heterogenic 3D co- vascularised tissue. Biofabrication. 2020;12(4): 045033.
cultures models. Biotechnol Bioeng. 2014;111(8):1672-1685. doi: 10.1088/1758-5090/abafc6
doi: 10.1002/bit.25210
31. Kwak TJ, Lee E. In vitro modeling of solid tumor interactions
19. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de with perfused blood vessels. Sci Rep-Uk. 2020;10(1): 20142.
Boer J. Spheroid culture as a tool for creating 3D complex doi: 10.1038/s41598-020-77180-1
tissues. Trends Biotechnol. 2013;31(2):108-115. 32. Ahn J, Kim D, Koo DJ, et al. 3D microengineered vascularized
doi: 10.1016/j.tibtech.2012.12.003
tumor spheroids for drug delivery and efficacy testing.
20. Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. Acta Biomater. 2023;165:153-167.
3D cell culture systems: tumor application, advantages, and doi: 10.1016/j.actbio.2022.10.009
disadvantages. Int J Mol Sci. 2021;22(22):12200. 33. Dey M, Kim MH, Dogan M, et al. Chemotherapeutics and
doi: 10.3390/ijms222212200
CAR-T cell-based immunotherapeutics screening on a 3D
21. Gao W, Wu D, Wang Y, et al. Development of a novel and bioprinted vascularized breast tumor model. Adv Funct
economical agar-based non-adherent three-dimensional Mater. 2022;32(52):2203966.
culture method for enrichment of cancer stem-like cells. doi: 10.1002/adfm.202203966
Stem Cell Res Ther. 2018;9(1):243. 34. Ozturk MS, Lee VK, Zou HY, Friedel RH, Intes X, Dai
doi: 10.1186/s13287-018-0987-x
GH. High-resolution tomographic analysis of in vitro 3D
22. Jeong Y, Tin A, Irudayaraj J. Flipped well-plate hanging- glioblastoma tumor model under long-term drug treatment.
drop technique for growing three-dimensional tumors. Sci Adv. 2020;6(10):eaay7513.
Front Bioeng Biotechnol. 2022;10:898699. doi: 10.1126/sciadv.aay7513
doi: 10.3389/fbioe.2022.898699
35. Hwang DG, Choi YM, Jang J. 3D bioprinting-based
23. de Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl vascularized tissue models mimicking tissue-specific
and Laponite bioink for 3D bioprinted organotypic tumor architecture and pathophysiology for studies. Front Bioeng
modeling. Biofabrication. 2023;15(4):045005. Biotech. 2021;9:685507.
doi: 10.1088/1758-5090/ace0db doi: 10.3389/fbioe.2021.685507
24. Wu L, Li H, Liu Y, et al. Research progress of 3D-bioprinted 36. Nashimoto Y, Hayashi T, Kunita I, et al. Integrating perfusable
functional pancreas and in vitro tumor models. Int J Bioprint. vascular networks with a three-dimensional tissue in a
2024;10(1):1256. microfluidic device. Integr Biol-Uk. 2017;9(6):506-518.
doi: 10.36922/ijb.1256 doi: 10.1039/c7ib00024c
25. Singh S, Ray LA, Shahi Thakuri P, et al. Organotypic breast 37. Velez C, Cheng K, Crosby C. Synthesis and Characterization
tumor model elucidates dynamic remodeling of tumor of Gelatin Methacryloyl: Introducing Chemistry Students
microenvironment. Biomaterials. 2020;238:119853. to the Applications of Hydrogels in Medicine. J Chem Educ.
doi: 10.1016/j.biomaterials.2020.119853 2024;101(3):1171-1179.
doi: 10.26434/chemrxiv-2023-qbrh6
26. Zhou X, Nowicki M, Sun H, et al. 3D bioprinting-tunable
small-diameter blood vessels with biomimetic biphasic cell 38. Millik SC, Dostie AM, Karis DG, et al. 3D printed coaxial
layers. ACS Appl Mater Inter. 2020;12(41):45904-45915. nozzles for the extrusion of hydrogel tubes toward modeling
doi: 10.1021/acsami.0c14871 vascular endothelium. Biofabrication. 2019;11(4):045009.
doi: 10.1088/1758-5090/ab2b4d
27. Meng FB, Meyer CM, Joung D, Vallera DA, McAlpine MC,
Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic 39. Siminska-Stanny J, Nicolas L, Chafai A, et al. Advanced
models via reconstruction of tumor microenvironments. PEG-tyramine biomaterial ink for precision engineering of
Adv Mater. 2019;31(10):1806899. perfusable and flexible small-diameter vascular constructs
Volume 11 Issue 4 (2025) 390 doi: 10.36922/IJB025180180