Page 17 - IJOCTA-15-1
P. 17
A nonlinear mathematical model to describe the transmission dynamics of the citrus canker epidemic
to the proposed model. (ii) An optimal control [7] Behlau, F. (2021). An overview of citrus canker
problem can be derived for the given model to see in Brazil. Tropical Plant Pathology, 46(1), 1-12.
the impacts of some effective controls like the re- https://doi.org/10.1007/s40858-020-00377
moval of the infected plants by burning, the use -2
of a Bordeaux mixture and lime sulphur sprays, [8] Gochez, A. M., Behlau, F., Singh, R., Ong, K.,
the use of neem cake in the field, and the use of Whilby, L., & Jones, J. B. (2020). Panorama of
antibiotic sprays like streptomycin sulphate and citrus canker in the United States. Tropical Plant
phonomycin. (iii) Some other mathematical char- Pathology, 45(3), 192-199. https://doi.org/10
acteristics of the model, like bifurcation analysis, .1007/s40858-020-00355-8
stability of the given model, etc., can be inves- [9] Balogh, B., Canteros, B. I., Stall, R. E., & Jones,
tigated in both the integer and fractional order J. B. (2008). Control of citrus canker and citrus
senses. (iv) Any other fractional derivative can bacterial spot with bacteriophages. Plant Disease,
be used to simulate the given epidemic model. 92(7), 1048-1052. https://doi.org/10.1094/PD
IS-92-7-1048
Acknowledgments
[10] Jia, H., Zhang, Y., Orbovi´c, V., Xu, J., White, F.
F., Jones, J. B., & Wang, N. (2017). Genome edit-
None.
ing of the disease susceptibility gene Cs LOB 1 in
Funding citrus confers resistance to citrus canker. Plant
Biotechnology Journal, 15(7), 817-823. https:
None. //doi.org/10.1111/pbi.12677
[11] Ference, C. M., Gochez, A. M., Behlau, F., Wang,
Conflict of interest
N., Graham, J. H., & Jones, J. B. (2018). Recent
The author declares no conflict of interest. advances in the understanding of Xanthomonas
citri ssp. citri pathogenesis and citrus canker
Author contributions disease management. Molecular Plant Pathology,
19(6), 1302. https://doi.org/10.1111/mpp.12
This is a single-authored article. 638
[12] Abdulridha, J., Batuman, O., & Ampatzidis, Y.
Availability of data
(2019). UAV-based remote sensing technique to
All the data is included in the paper. detect citrus canker disease utilizing hyperspec-
tral imaging and machine learning. Remote Sens-
References ing, 11(11), 1373. https://doi.org/10.3390/
rs11111373
[1] CAB International. Available from: https://ww
[13] Qin, J., Burks, T. F., Ritenour, M. A., & Bonn,
w.cabi.org/isc/datasheet/56921#toDistrib
W. G. (2009). Detection of citrus canker using hy-
utionMaps [Accessed 8 May 2022].
perspectral reflectance imaging with spectral in-
[2] Das, A. K. (2003). Citrus canker-A review. Jour-
formation divergence. Journal of Food Engineer-
nal of Applied Horticulture, 5(1), 52-60. https:
ing, 93(2), 183-191. https://doi.org/10.1016/
//doi.org/10.37855/jah.2003.v05i01.15
[3] Gottwald, T. R., Graham, J. H., & Schubert, T. j.jfoodeng.2009.01.014
S. (2002). Citrus canker: the pathogen and its [14] Hameed, A., Atiq, M., Ahmed, Z., Rajput, N.
impact. Plant Health Progress, 3(1), 15. https: A., Younas, M., Rehman, A., ... & Ansari, M. J.
//doi.org/10.1094/PHP-2002-0812-01-RV (2022). Predicting the impact of environmental
[4] Graham, J. H., Gottwald, T. R., Cubero, J., & factors on citrus canker through multiple regres-
Achor, D. S. (2004). Xanthomonas axonopodis sion. Plos One, 17(4), e0260746. https://doi.
pv. citri: factors affecting successful eradication org/10.1371/journal.pone.0260746
of citrus canker. Molecular Plant Pathology, 5(1),
[15] Christiano, R. S. C., Dalla Pria, M., Jesus Junior,
1-15. https://doi.org/10.1046/j.1364-3703.
W. C., Amorim, L., & Bergamin Filho, A. (2009).
2004.00197.x
Modelling the progress of Asiatic citrus canker
[5] Stall, R. E., & Civerolo, E. L. (1991). Research
on Tahiti lime in relation to temperature and
relating to the recent outbreak of citrus canker in
leaf wetness. European Journal of Plant Pathol-
Florida. Annual Review of Phytopathology, 29(1),
ogy, 124(1), 1-7. https://doi.org/10.1007/s1
399-420. https://doi.org/10.1146/annurev.
0658-008-9389-8
py.29.090191.002151
[6] Gottwald, T. R., Timmer, L. W., & McGuire, R. [16] Podlubny, I. (1998). Fractional Differential Equa-
G. (1989). Analysis of disease progress of Citrus tions: An Introduction to Fractional Derivatives,
canker in nurseries in Argentina. Phytopathology, Fractional Differential Equations, to Methods of
79(11), 1276-1283. https://doi.org/10.1094/ their Solution and Some of their Applications. El-
Phyto-79-1276 sevier.
11

