Page 14 - IJOCTA-15-1
P. 14

P. Kumar / IJOCTA, Vol.15, No.1, pp.1-13 (2025)



                              m  i−⌈γ⌉                          m n−1                         m
                                                               X X                             X
                             X X                                           (γ) n−j−γ
              γ  C                        (γ) i−n−γ                    E n ∆  t     = Q 0 + l     P n F n (t)
               D (Ω m (t)) =          a i ∆ i,n t    and                   n,j
                 t
                             i=⌈γ⌉ n=0                         n=1 j=0                         n=0
                                                                     m
                          n 2i−2n
                (γ)   (−1) 2     (2k + 1)(2i − n)!(i − n)!            X
              ∆ i,n  =                                   .      − g 0    E n F n (t) .
                     T ∗k−n Γ(i − n + 1 − γ)Γ(2i − 2n + 2)
                                                                      n=0
                                                       (49)                                              (54)
                                                              Now the Eqs. (51)-(54) are collocated at m nodes
            Now we apply the Chebyshev spectral colloca-      t p , p = 0, 1, ..., m − 1 as follows:
            tion scheme to derive the solution of the proposed
            model (24) as follows:
                                                               m n−1                  m
                                                              X X       (γ) n−j−γ    γ  X
                                                                     I n ∆  t    = β       I n F n (t p )
                      m                       m                         n,j p
                                                              n=1 j=0                   n=0
                     X                       X
             I m (t) =   I n F n (t),  P m (t) =  P n F n (t),
                                                                    m           m
                                                                    X                X
                     n=0                     n=0              + λ γ     B n F n (t p )  P n F n (t p )
                      m                        m
                      X                       X                     n=0              n=0
             B m (t) =   B n F n (t),  E m (t) =  E n F n (t).   m                           m
                                                                  X                 γ   γ    γ  X
                      n=0                     n=0             −      I n F n (t p )  − (ν + α + δ )  I n F n (t p ) ,
                                                       (50)       n=0                           n=0
                                                                                                         (55)
            Using Eqs. (24), (50) and the formula (49), we
            get
                                                               m n−1                          m
                                                              X X         (γ) n−j−γ    γ    γ  X
                                                                      P n ∆ n,j p  = Λ − δ        P n F n (t p )
                                                                            t
             m n−1                    m                    n=1 j=0                          n=0
             X X       (γ) n−j−γ    γ  X
                   I n ∆  t     = β        I n F n (t)              m
                       n,j                                        γ  X
             n=1 j=0                   n=0                     − α       I n F n (t p ) ,
                  m           m                                n=0
                                   X
                   X
             + λ γ    B n F n (t)      P n F n (t)                                                       (56)
                   n=0             n=0
                m                          m
                 X                γ    γ    γ  X                  m n−1
             −      I n F n (t)  − (ν + α + δ )    I n F n (t) ,  X X       (γ) n−j−γ
                                                                        B n ∆  t      =
                 n=0                           n=0                          n,j p
                                                       (51)      n=1 j=0
                                                                   m                    m
                                                                    X                    1  X
                                                                 γ
                                                                s       B n F n (t p )  1 −     B n F n (t p )
              m n−1                          m                                        K
             X X         (γ) n−j−γ    γ    γ  X                     n=0                     n=0
                    P n ∆  t      = Λ − δ        P n F n (t)          m                 m
                         n,j                                           X                   X
             n=1 j=0                          n=0                + s γ     I n F n (t p ) − s γ  B n F n (t p )
                                                                    1                   0
                   m
                                                                       n=0                 n=0
                    X
             − α γ      I n F n (t) ,                                 m             m
                                                                       X               X
                                                                    γ
                    n=0                                          + g       B n F n (t p )  E n F n (t p ) ,
                                                       (52)            n=0             n=0
                                                                                                         (57)
               m n−1
              X X         (γ) n−j−γ
                     B n ∆  t      =                          and
                          n,j
              n=1 j=0
                 m                   m
                  X                  1   X                      m n−1                        m
              s γ    B n F n (t)  1 −       B n F n (t)        X X         (γ) n−j−γ          X
                                                                             t
                                     K                                E n ∆ n,j p   = Q 0 + l     P n F n (t p )
                  n=0                    n=0           (53)
                   m                 m                     n=1 j=0                        n=0
                 γ  X                γ  X                           m
              + s 1     I n F n (t) − s 0  B n F n (t)               X
                                                               − g 0     E n F n (t p ) .
                    n=0                 n=0
                    m           m                                n=0
                     X              X                                                                    (58)
                  γ
              + g       B n F n (t)    E n F n (t) ,
                     n=0            n=0
                                                              By substituting from Eq. (50), the initial condi-
            and                                               tions can be defined by
                                                            8
   9   10   11   12   13   14   15   16   17   18   19