Page 18 - IJOCTA-15-1
P. 18
P. Kumar / IJOCTA, Vol.15, No.1, pp.1-13 (2025)
[17] Yavuz, M., Arfan, M., & Sami, A. (2024). Theo- using optimized linearization-based predictor-
retical and numerical investigation of a modified corrector method in Caputo sense. Chaos,
ABC fractional operator for the spread of polio Solitons & Fractals, 158, 112067. h t t p s :
under the effect of vaccination. AIMS Biophysics, //doi.org/10.1016/j.chaos.2022.112067
11(1). https://doi.org/10.3934/biophy.202 [27] Kumar, P., Erturk, V. S., Govindaraj, V., & Ku-
4007 mar, S. (2022). A Fractional Mathematical Mod-
¨
¨
[18] Evirgen, F., Ozk¨ose, F., Yavuz, M., & Ozdemir, eling of Protectant and Curative Fungicide Appli-
N. (2023). Real data-based optimal control strate- cation. Chaos, Solitons & Fractals: X, 100071. ht
gies for assessing the impact of the Omicron vari- tps://doi.org/10.1016/j.csfx.2022.100071
ant on heart attacks. AIMS Bioengineering, 10(3). [28] Kumar, P., Suat Ert¨urk, V., & Nisar, K. S.
https://doi.org/10.3934/bioeng.2023015 (2021). Fractional dynamics of huanglongbing
[19] Logaprakash, P., & Monica, C. (2023). Optimal transmission within a citrus tree. Mathematical
control of diabetes model with the impact of Methods in the Applied Sciences, 44(14), 11404-
endocrine-disrupting chemical: an emerging in- 11424. https://doi.org/10.1002/mma.7499
creased diabetes risk factor. Mathematical Mod- [29] Kumar, P., Erturk, V. S., & Almusawa,
elling and Numerical Simulation with Applica- H. (2021). Mathematical structure of mo-
tions, 3(4), 318-334. https://doi.org/10.533 saic disease using microbial biostimulants
91/mmnsa.1397575 via Caputo and Atangana-Baleanu deriva-
[20] Fatima, B., Yavuz, M., ur Rahman, M., tives. Results in Physics, 24, 104186. https:
Althobaiti, A., & Althobaiti, S. (2023). //doi.org/10.1016/j.rinp.2021.104186
Predictive modeling and control strategies [30] ur Rahman, M., Arfan, M., & Baleanu, D. (2023).
for the transmission of middle east respi- Piecewise fractional analysis of the migration
ratory syndrome coronavirus. Mathematical effect in plant-pathogen-herbivore interactions.
and Computational Applications, 28(5), 98. Bulletin of Biomathematics, 1(1), 1-23. https://
https://doi.org/10.3390/mca28050098 doi.org/10.59292/bulletinbiomath.2023001
[21] Odionyenma, U. B., Ikenna, N., & Bolaji, [31] Gonzalez-Guzman, J. (1989). An epidemi-
B. (2023). Analysis of a model to control ological model for direct and indirect
the co-dynamics of Chlamydia and Gon- transmission of typhoid fever. Mathemat-
orrhea using Caputo fractional derivative. ical Biosciences, 96(1), 33-46. h t t p s :
Mathematical Modelling and Numerical Sim- //doi.org/10.1016/0025-5564(89)90081-3
ulation with Applications, 3(2), 111-140. [32] Ghosh, M., Chandra, P., Sinha, P., & Shukla,
https://doi.org/10.53391/mmnsa.1320175 J. B. (2005). Modelling the spread of bacterial
[22] Joshi, H., Jha, B. K., & Yavuz, M. (2023). disease: effect of service providers from an
Modelling and analysis of fractional-order environmentally degraded region. Applied Mathe-
vaccination model for control of COVID-19 matics and Computation, 160(3), 615-647. https:
outbreak using real data. Mathematical Bio- //doi.org/10.1016/j.amc.2003.11.022
sciences and Engineering, 20(1), 213-240. [33] Ghosh, M., Chandra, P., Sinha, P., &
https://doi.org/10.3934/mbe.2023010 Shukla, J. B. (2006). Modelling the spread
¨
[23] Evirgen, F., U¸car, E., U¸car, S., & Ozdemir, of bacterial infectious disease with environ-
N. (2023). Modelling influenza a disease mental effect in a logistically growing hu-
dynamics under Caputo-Fabrizio fractional man population. Nonlinear Analysis: Real
derivative with distinct contact rates. Math- World Applications, 7(3), 341-363. h t t p s :
ematical Modelling and Numerical Sim- //doi.org/10.1016/j.nonrwa.2005.03.005
ulation with Applications, 3(1), 58-73. [34] Asamoah, J. K. K., Nyabadza, F., Seidu, B.,
https://doi.org/10.53391/mmnsa.1274004 Chand, M., & Dutta, H. (2018). Mathematical
[24] Kumar, P., Baleanu, D., Erturk, V. S., modelling of bacterial meningitis transmission
Inc, M., & Govindaraj, V. (2022). A de- dynamics with control measures. Computational
layed plant disease model with Caputo frac- and Mathematical Methods in Medicine, 2018.
tional derivatives. Advances in Continuous https://doi.org/10.1155/2018/2657461
and Discrete Models, 2022(1), 1-22. https: [35] Murata, Y. (2014). Mathematics for stability
//doi.org/10.1186/s13662-022-03684-x and optimization of economic systems. Academic
[25] Vellappandi, M., Kumar, P., Govindaraj, Press.
V., & Albalawi, W. (2022). An optimal [36] Mason, J. C., & Handscomb, D. C. (2002). Cheby-
control problem for mosaic disease via Ca- shev polynomials. Chapman and Hall/CRC.
puto fractional derivative. Alexandria Engi- [37] Snyder, M. A. (1966). Chebyshev methods in
neering Journal, 61(10), 8027-8037. https: numerical approximation, Englewood Cliffs, New
//doi.org/10.1016/j.aej.2022.01.055 Jersey: Prentice-Hall Incorporated; 1966.
[26] Kumar, P., Erturk, V. S., Vellappandi, M., [38] Khader, M. M. (2011). On the numerical so-
Trinh, H., & Govindaraj, V. (2022). A study lutions for the fractional diffusion equation.
on the maize streak virus epidemic model by Communications in Nonlinear Science and
12

