Page 18 - IJOCTA-15-1
P. 18

P. Kumar / IJOCTA, Vol.15, No.1, pp.1-13 (2025)


            [17] Yavuz, M., Arfan, M., & Sami, A. (2024). Theo-   using optimized linearization-based predictor-
                retical and numerical investigation of a modified  corrector method in Caputo sense. Chaos,
                ABC fractional operator for the spread of polio   Solitons & Fractals, 158, 112067. h t t p s :
                under the effect of vaccination. AIMS Biophysics,  //doi.org/10.1016/j.chaos.2022.112067
                11(1). https://doi.org/10.3934/biophy.202     [27] Kumar, P., Erturk, V. S., Govindaraj, V., & Ku-
                4007                                              mar, S. (2022). A Fractional Mathematical Mod-
                            ¨
                                                   ¨
            [18] Evirgen, F., Ozk¨ose, F., Yavuz, M., & Ozdemir,  eling of Protectant and Curative Fungicide Appli-
                N. (2023). Real data-based optimal control strate-  cation. Chaos, Solitons & Fractals: X, 100071. ht
                gies for assessing the impact of the Omicron vari-  tps://doi.org/10.1016/j.csfx.2022.100071
                ant on heart attacks. AIMS Bioengineering, 10(3).  [28] Kumar, P., Suat Ert¨urk, V., & Nisar, K. S.
                https://doi.org/10.3934/bioeng.2023015            (2021). Fractional dynamics of huanglongbing
            [19] Logaprakash, P., & Monica, C. (2023). Optimal    transmission within a citrus tree. Mathematical
                control of diabetes model with the impact of      Methods in the Applied Sciences, 44(14), 11404-
                endocrine-disrupting chemical: an emerging in-    11424. https://doi.org/10.1002/mma.7499
                creased diabetes risk factor. Mathematical Mod-  [29] Kumar,  P.,  Erturk,  V. S.,  & Almusawa,
                elling and Numerical Simulation with Applica-     H. (2021). Mathematical structure of mo-
                tions, 3(4), 318-334. https://doi.org/10.533      saic  disease  using  microbial  biostimulants
                91/mmnsa.1397575                                  via  Caputo  and   Atangana-Baleanu  deriva-
            [20] Fatima,  B.,  Yavuz,  M.,  ur Rahman,  M.,       tives. Results in Physics, 24, 104186. https:
                Althobaiti,  A.,  &  Althobaiti,  S.  (2023).     //doi.org/10.1016/j.rinp.2021.104186
                Predictive  modeling  and  control  strategies  [30] ur Rahman, M., Arfan, M., & Baleanu, D. (2023).
                for the transmission of middle east respi-        Piecewise fractional analysis of the migration
                ratory  syndrome   coronavirus.  Mathematical     effect in plant-pathogen-herbivore interactions.
                and Computational Applications,  28(5),  98.      Bulletin of Biomathematics, 1(1), 1-23. https://
                https://doi.org/10.3390/mca28050098               doi.org/10.59292/bulletinbiomath.2023001
            [21] Odionyenma, U. B., Ikenna, N., & Bolaji,     [31] Gonzalez-Guzman,  J.  (1989).  An  epidemi-
                B. (2023). Analysis of a model to control         ological  model  for  direct  and   indirect
                the  co-dynamics  of  Chlamydia  and   Gon-       transmission  of  typhoid  fever.  Mathemat-
                orrhea  using  Caputo   fractional  derivative.   ical  Biosciences,  96(1),  33-46.  h t t p s :
                Mathematical Modelling and Numerical Sim-         //doi.org/10.1016/0025-5564(89)90081-3
                ulation  with  Applications,  3(2),  111-140.  [32] Ghosh, M., Chandra, P., Sinha, P., & Shukla,
                https://doi.org/10.53391/mmnsa.1320175            J. B. (2005). Modelling the spread of bacterial
            [22] Joshi, H., Jha, B. K., & Yavuz, M. (2023).       disease:  effect of service providers from an
                Modelling  and   analysis  of  fractional-order   environmentally degraded region. Applied Mathe-
                vaccination model for control of COVID-19         matics and Computation, 160(3), 615-647. https:
                outbreak using real data. Mathematical Bio-       //doi.org/10.1016/j.amc.2003.11.022
                sciences  and  Engineering,  20(1),  213-240.  [33] Ghosh,  M.,  Chandra,  P.,  Sinha,  P.,  &
                https://doi.org/10.3934/mbe.2023010               Shukla, J. B. (2006). Modelling the spread
                                                   ¨
            [23] Evirgen, F., U¸car, E., U¸car, S., & Ozdemir,    of bacterial infectious disease with environ-
                N.   (2023).  Modelling  influenza  a  disease    mental effect in a logistically growing hu-
                dynamics   under  Caputo-Fabrizio  fractional     man population. Nonlinear Analysis:    Real
                derivative with distinct contact rates. Math-     World Applications, 7(3), 341-363. h t t p s :
                ematical  Modelling   and  Numerical   Sim-       //doi.org/10.1016/j.nonrwa.2005.03.005
                ulation  with   Applications,  3(1),  58-73.  [34] Asamoah, J. K. K., Nyabadza, F., Seidu, B.,
                https://doi.org/10.53391/mmnsa.1274004            Chand, M., & Dutta, H. (2018). Mathematical
            [24] Kumar,  P.,  Baleanu,  D.,  Erturk,  V. S.,      modelling of bacterial meningitis transmission
                Inc, M., & Govindaraj, V. (2022). A de-           dynamics with control measures. Computational
                layed plant disease model with Caputo frac-       and Mathematical Methods in Medicine, 2018.
                tional  derivatives.  Advances  in  Continuous    https://doi.org/10.1155/2018/2657461
                and Discrete Models, 2022(1), 1-22. https:    [35] Murata, Y. (2014). Mathematics for stability
                //doi.org/10.1186/s13662-022-03684-x              and optimization of economic systems. Academic
            [25] Vellappandi,  M.,  Kumar,  P.,  Govindaraj,      Press.
                V.,  & Albalawi,   W. (2022). An optimal      [36] Mason, J. C., & Handscomb, D. C. (2002). Cheby-
                control problem for mosaic disease via Ca-        shev polynomials. Chapman and Hall/CRC.
                puto fractional derivative. Alexandria Engi-  [37] Snyder, M. A. (1966). Chebyshev methods in
                neering Journal, 61(10), 8027-8037. https:        numerical approximation, Englewood Cliffs, New
                //doi.org/10.1016/j.aej.2022.01.055               Jersey: Prentice-Hall Incorporated; 1966.
            [26] Kumar, P., Erturk, V. S., Vellappandi, M.,   [38] Khader, M. M. (2011). On the numerical so-
                Trinh, H., & Govindaraj, V. (2022). A study       lutions for the fractional diffusion equation.
                on the maize streak virus epidemic model by       Communications   in  Nonlinear  Science  and

                                                            12
   13   14   15   16   17   18   19   20   21   22   23