Page 12 - IJOCTA-15-1
P. 12

P. Kumar / IJOCTA, Vol.15, No.1, pp.1-13 (2025)

                                                              Which gives
                   γ  C
                   D I(t) = K 1 (t, I, P, B, E),
                       t
                  
                   γ  C
                  
                     D P(t) = K 2 (t, I, P, B, E),     (25)          ∥ζ n (t)∥ = ∥G n (t) − G n−1 (t)∥
                       t
                    γ
                       C
                   D B(t) = K 3 (t, I, P, B, E),                                    Z  t
                      t                                                          1
                                                                                              γ−1
                   γ  C                                             ∥ζ n (t)∥ =∥       (t − ϑ)
                     D E(t) = K 4 (t, I, P, B, E),                              Γ(γ)  0
                       t
            with initial conditions I(0) = I 0 , P(0) =              [K(G n−1 (ϑ), ϑ) − K(G n−2 (ϑ), ϑ)] dϑ ∥ .(31)
            P 0 , B(0) = B 0 , E(0) = E 0 . Here K 1 , K 2 , K 3 ,  Then, we get
            and K 4 are the singular-type kernels representing
            the right-hand side expressions of model (24), re-                          Z  t
            spectively.                                                  ∥ζ n (t)∥ ≤  1    (t − ϑ) γ−1
                                                                                   Γ(γ)  0
            3.2. Solution existence                               ∥K(G n−1 (ϑ), ϑ) − K(G n−2 (ϑ), ϑ)∥ dϑ.  (32)
            Here we check the existence and uniqueness of the
            solution with the application of some well-known  Now we fix K as a Lipschitzian respect to G, so
            mathematical results. In this regard, we consider  we have
            the following initial value problem (IVP) for rep-
            resenting the model (25)                                                Z  t
                                                                                 L            γ−1
                                                                      ∥ζ n (t)∥ ≤      (t − ϑ)
                                                                                Γ(γ)
                         γ  C                                                         0
                          D G(t) = K(G(t), t),
                            t
                                                       (26)               ∥G n−1 (ϑ) − G n−2 (ϑ)∥ dϑ.    (33)
                         G(0) = G 0 ,
            where
                                                              Therefore, we get the following result
                     G(t) = [I(t), P(t), B(t), E(t)],
                      G 0 = [I(0), P(0), B(0), E(0)],                     L   Z  t
                                                               ∥ζ n (t)∥ ≤       (t − ϑ) γ−1  ∥ζ n−1 (ϑ)∥ dϑ. (34)
                              
                               K 1 (t, I, P, B, E),                     Γ(γ)  0
                              
                                 K 2 (t, I, P, B, E),
                              
                  K(G(t), t) =                                Theorem 3. The given IVP (26) has a unique
                               K 3 (t, I, P, B, E),
                                                             solution under the contraction for K.
                                 K 4 (t, I, P, B, E).
                              
                                                              Proof. From (34), we have
            Let us consider the following Volterra integral
                                                                              Z  t
            equation of the IVP (26)                                      L            γ−1
                                                               ∥ζ n (t)∥ ≤       (t − ϑ)   ∥ζ n−1 (ϑ)∥ dϑ. (35)
                                                                         Γ(γ)  0
            G(t) = G 0 +    1  R  t (t − ϑ) γ−1 K(G(ϑ), ϑ)dϑ.
                          Γ(γ)  0                             Using the value of ∥ζ n−1 (t)∥, we have
                                                       (27)
            Following iterative approach on the nonlinear ker-                    γ    2
                                                                                 Lt
            nel K, we derive the expression                        ∥ζ n (t)∥ ≤            ∥ζ n−2 (t)∥ .  (36)
                                                                               Γ(γ + 1)
            G n (t) = G 0 +  1  R  t (t − ϑ) γ−1 K(G n−1 (ϑ), ϑ)dϑ.  Similarly, for ∥ζ n−2 (t)∥
                          Γ(γ)  0
                                                       (28)
            We choose G 0 (t) = G 0 . Then, the difference of two               Lt γ   3
            successive terms is defined by                         ∥ζ n (t)∥ ≤            ∥ζ n−3 (t)∥ .  (37)
                                                                               Γ(γ + 1)

                                       1   Z  t               Then, from the successive iterations, we get
                    G n (t) − G n−1 (t) =     (t − ϑ) γ−1
                                      Γ(γ)  0
                    [K(G n−1 (ϑ), ϑ) − K(G n−2 (ϑ), ϑ)]dϑ. (29)                  Lt γ   n
                                                                  ∥ζ n (t)∥ ≤              ∥ζ 0 (t)∥
                                                                                Γ(γ + 1)
                                                                                   γ    n
            We choose ζ n = G n (t) − G n−1 (t). Therefore, we                     t         n
                                                                          ≤                L max ∥G 0 ∥ .(38)
            have                                                                Γ(γ + 1)      t∈[0,T]
                                                                                n
                                  n                                             P
                                 X                            If we say G(t) =     ζ j (t), then G(t) exists and
                          G n (t) =  ζ j (t).          (30)                     j=0
                                  j=0                         continuous.
                                                            6
   7   8   9   10   11   12   13   14   15   16   17