Page 10 - IJOCTA-15-1
P. 10

P. Kumar / IJOCTA, Vol.15, No.1, pp.1-13 (2025)


                        α   2     βΛ                          and
                 β 1 +     I −       − (α + ν + δ)
                        δ          δ                                                     Q 0  glΛ
                                                                              s − s 0 + g
                                                                                          +

                                α        λΛ                      dI                      g 0   g 0 δ
                      −λB 1 +        I −    B = 0,     (10)                =                         > 0
                                δ         δ                      dB  (B 1 ,0)      s 1 −  glα
                                                                                      g 0 d  B 1
                    s   2             Q 0   glΛ
                    K  B − s − s 0 + g    +      B                                                s 1 g 0 δ
                                       g 0  g 0 δ                                         if B 1 <     . (14)
               I =                                 .   (11)                                        glα
                               s 1 −  glα B
                                    g 0 δ
                                                                    dI                    s 1 g 0 δ
                                                              (iv)       → ∞ when B =          .
            From (10), we get the following results:                dB                     glα
                                                              From the above given conditions, a positive in-
                                                                               ¯ ¯
                                                              tersecting point (B, I) will be received under the
            (i) For the case B = 0, I = 0 or I =
             βΛ  − (α + ν + δ)                                inequality (14), i.e. when
              δ                = I 1 (say), we notice that
                       α
                β 1 + )                                            K                 glΛ    s 1 g 0 δ
                       δ                                                        Q 0
                            βΛ                                         s − s 0 + g  +       <       .    (15)
            I 1 < 0, when      < (ν + α + δ) and I 1 > 0           s                  g 0 δ    glα
                            δ                                                    g 0
            otherwise.
                                                                     ¯
                                                                             ¯
                                                              Then, E and P can be estimated from (9) as
                                                                  Λ
                                                              ¯
                                    Λ                         I <   .                                      □
            (ii) B → ∞ when I →         .                         α
                                   α + δ                                                           ∗
                                                              Theorem 2. The equilibrium point E is unsta-
                                                                                                   1
                                                                       ∗
                                                              ble and E is stable provided α 3 (α 2 α 1 − α 0 α 3 ) −
            (iii) At (0, 0), the slope:                        2       2
                                                              α > 0, where α 0 , α 1 , α 2 and α 3 are defined in
                                                               1
                                                              the given proof.

                                       dI
                                            =                 Proof. Firstly, we define the variational matrix
                                      dB
                                                              M associated to the model (7), given by
            
                      −λΛ
                        δ
                                        βΛ
                                 < 0, if    > (ν + α + δ),                                                
                βΛ  − (ν + α + δ)         δ                          A    βI + λB        λ(P − I)         0
                 δ
                                        βΛ                          −α     −δ             0             0  
                                 > 0, if    < (ν + α + δ).    M =                                          
            
                                          δ                          s 1     0     s − s 0 + gE −  2sB  gB  
                                                       (12)                                        K
                                                                     0        l             0          −g 0
                                                                                                         (16)
            Also, at (0, I 1 ), the slope is
                                                              where A = βP − 2βI − λB − (α + ν + δ).
                                                              Similarly, the corresponding variational ma-

                                       dI
                                            =                 trix  M 1  to  the   model   (7)  at  equilibria
                                       dB                                Q 0 +  lΛ
                                                                    Λ
                                                                ∗
                                                              E 0, , 0,      δ  is defined by
                   λ(ν + α + δ)            βΛ                              g 0
                                                               1   δ
                                   < 0, if    > (ν + α + δ),
            
                  βΛ                       δ
                β(   − (ν + α + δ))                                  βΛ                                   
                   δ                                                    − (ν + α + δ)  0      λΛ         0
                                      βΛ                             δ                        δ
                                > 0, if   < (ν + α + δ).
                                        δ                            −α            −d        0          0  
                                                                                                          
                                                       (13)   M 1 =                             Q 0 +  lΛ   .
                                                                    s 1             0  s − s 0 + g  δ   0 
                                                                                                  g 0
                                                                     0               l        0        −g 0
            From (11), we have the following results:                                                    (17)
                                                              Then, the two eigen values are −δ and −g 0 and
                                                              the other values can be calculated from the fol-
            (i) I = 0, in the case B = 0 or
                                                            lowing quadratic equation
                 K             Q 0   glΛ
            B =      s − s 0 + g   +       = B 1 > 0, which
                  s             g 0  g 0 δ                                                            lΛ
            is positive.                                      ψ −    βΛ  − (ν + α + δ) + s − s 0 + g  Q 0 +  δ  ψ
                                                               2
                                  s 1 g 0 δ                           δ                              g 0
            (ii) I → ∞ when B =        .
                                   glα                             βΛ                        Q 0 +  lΛ
            (iii)                                             +       − (ν + α + δ)   s − s 0 + g     δ
                                                                   δ                               g 0
                                         Q 0   glΛ
                               s − s 0 + g  +                      Λ
                 dI                       g 0  g 0 δ          − λs 1  = 0.

                          = −                        < 0            δ
                 dB                     s 1                                                              (18)
                      (0,0)
                                                            4
   5   6   7   8   9   10   11   12   13   14   15