Page 114 - IJOCTA-15-2
P. 114
Collocation method with flood-based metaheuristic optimizer for optimal control ...
9. Ghostine R, Gharamti M, Hassrouny S, Hoteit 20. Wu H, Zhang L, Li HL, Teng Z. Stability analysis
I. An extended SEIR model with vaccination and optimal control on a multi-strain coinfection
for forecasting the COVID-19 pandemic in Saudi model with amplification and vaccination. Results
Arabia using an ensemble Kalman filter. Mathe- Phys., 2023;50:106556.
matics., 2021;9(6):636. https://doi.org/10.1016/j.rinp.2023.106556
https://doi.org/10.3390/math9060636 21. Elqaddaoui A, El Bhih A, Laarabi H, Rachik M,
10. Hussain T, Ozair M, Ali F, ur Rehman S, As- Abta A. A stochastic optimal control strategy for
siri TA, Mahmoud EE. Sensitivity analysis and multi-strain COVID-19 spread. Commun Math
optimal control of COVID-19 dynamics based on Biol Neurosci., 2023;2023:130.
SEIQR model. Results Phys., 2021;22:103956. 22. Khajji B, Boujallal L, Balatif O, Rachik M. Math-
https://doi.org/10.1016/j.rinp.2021.103956 ematical modelling and optimal control strategies
11. Olaniyi S, Obabiyi OS, Okosun KO, Oladipo of a multistrain COVID-19 spread. J Appl Math.,
AT, Adewale SO. Mathematical modelling 2022;2022(1):9071890.
and optimal cost-effective control of COVID- https://doi.org/10.1155/2022/9071890
19 transmission dynamics. Eur Phys J Plus., 23. Venkatesh A, Ankamma Rao M, Vamsi DKK.
2020;135(11):938. A comprehensive study of optimal control model
https://doi.org/10.1140/epjp/s13360-020-00954- simulation for COVID-19 infection with respect
z to multiple variants. Commun Math Biol Neu-
12. Abidemi A, Zainuddin ZM, Aziz NAB. Impact rosci., 2023;2023:75.
of control interventions on COVID-19 population 24. Nocedal J, Wright SJ. Numerical Optimization.
dynamics in Malaysia: a mathematical study. Springer. 2006.
Eur Phys J Plus., 2021;136(2):237. 25. Luenberger DG, Ye Y. Linear and Nonlinear Pro-
https://doi.org/10.1140/epjp/s13360-021-01205- gramming, Addison-Wesley. 1984.
5 26. Bazaraa MS, Sherali HD, Shetty CM. Nonlinear
programming: Theory and Algorithms. John Wi-
13. Libotte GB, Lobato FS, Platt GM, Neto AJS.
ley & Sons. 2006.
Determination of an optimal control strategy for
vaccine administration in COVID-19 pandemic https://doi.org/10.1002/0471787779
treatment. Comput Methods Programs Biomed., 27. Ghasemi M, Golalipour K, Zare M et al. Flood
2020;196:105664. algorithm (FLA): an efficient inspired meta-
https://doi.org/10.1016/j.cmpb.2020.105664 heuristic for engineering optimization. J Super-
comput., 2024;80(15):22913-23017.
14. Khan AA, Ullah S, Amin R. Optimal control
https://doi.org/10.1007/s11227-024-06291-7
analysis of COVID-19 vaccine epidemic model: a
28. Guo J, Zhao M, Yu J et al. EHPR: Learn-
case study. Eur Phys J Plus., 2022;137(1):156.
ing evolutionary hierarchy perception representa-
https://doi.org/10.1140/epjp/s13360-022-02365-
tion based on quaternion for temporal knowledge
8
graph completion. Inf Sci., 2025;688:121409.
15. Shen ZH, Chu YM, Khan MA, Muhammad S, Al-
https://doi.org/10.1016/j.ins.2024.121409
Hartomy OA, Higazy M. Mathematical modeling
29. Yildiz BS. Enhancing the performance of a addi-
and optimal control of the COVID-19 dynamics.
tive manufactured battery holder using a coupled
Results Phys., 2021;31:105028.
artificial neural network with a hybrid flood al-
https://doi.org/10.1016/j.rinp.2021.105028
gorithm and water wave algorithm. Mater Test.,
16. Olivares A, Staffetti E. Optimal control applied
2024;66(10):1557-1563.
to vaccination and testing policies for COVID-19.
https://doi.org/10.1515/mt-2024-0217
Mathematics., 2021;9(23):3100.
30. Li T, Wu D, Zhou M, Liao Q, Peng Y. ADCV:
https://doi.org/10.3390/math9233100
Unsupervised depth completion employing adap-
17. Rajput A, Sajid M, Tanvi, Shekhar C, Aggarwal
tive depth-based cost volume. Digit Signal Pro-
R. Optimal control strategies on COVID-19 infec-
cess., 2024;155:104750.
tion to bolster the efficacy of vaccination in India.
https://doi.org/10.1016/j.dsp.2024.104750
Sci Rep., 2021;11(1):20124.
31. Yan C, Yang K. FSM-YOLO: Apple leaf disease
https://doi.org/10.1038/s41598-021-99088-0
detection network based on adaptive feature cap-
18. Arruda EF, Das SS, Dias CM, Pastore DH.
ture and spatial context awareness. Digit Signal
Modelling and optimal control of multi strain
Process., 2024;155:104770.
epidemics, with application to COVID-19. Plos
https://doi.org/10.1016/j.dsp.2024.104770
One., 2021;16(9), e0257512.
32. Liu H, Xiao J, Yao Y et al. A multi-strategy im-
https://doi.org/10.1371/journal.pone.0257512
proved northern goshawk optimization algorithm
19. Elqaddaoui A, El Bhih A, Laarabi H, Abta for optimizing engineering problems. Biomimet-
A, Rachik M. Mathematical modeling and op- ics., 2024;9(9):561.
timal control of multi-strain COVID-19 spread https://doi.org/10.3390/biomimetics9090561
in discrete time. Front Appl Math Stat., 33. COVID-19 coronavirus outbreak, 2022, https://
2024;10:1392628. www.worldometers.info/coronavirus/repro
https://doi.org/10.3389/fams.2024.1392628 [Accessed 19, 2022].
309

