Page 124 - IJOCTA-15-2
P. 124
Parallel late acceptance hill-climbing for binary-encoded optimization problems
Table 5. Gap scores on UFLP instances for different values of L on using 16 threads
Instance L=10 L=20 L=50 L=100
cap71 0.00 0.00 0.00 0.00
cap72 0.00 0.00 0.00 0.00
cap73 0.00 0.00 0.00 0.00
cap74 0.00 0.00 0.00 0.00
cap101 0.00 0.00 0.00 0.00
cap102 0.00 0.00 0.00 0.00
cap103 0.01 0.00 0.00 0.00
cap104 0.00 0.00 0.00 0.00
cap131 0.16 0.08 0.00 0.04
cap132 0.03 0.00 0.00 0.01
cap133 0.01 0.03 0.05 0.03
cap134 0.00 0.00 0.00 0.00
capa 2.72 1.97 5.73 53.26
capb 2.20 1.57 2.77 20.47
capc 1.66 1.38 2.03 15.10
Avg.Gap 0.45 0.34 0.71 5.93
Table 6. Gap scores on UFLP instances for different values of L on using 32 threads
Instance L=10 L=20 L=50 L=100
cap71 0.00 0.00 0.00 0.00
cap72 0.00 0.00 0.00 0.00
cap73 0.00 0.00 0.00 0.00
cap74 0.00 0.00 0.00 0.00
cap101 0.00 0.00 0.00 0.00
cap102 0.00 0.00 0.00 0.00
cap103 0.00 0.00 0.00 0.00
cap104 0.00 0.00 0.00 0.00
cap131 0.02 0.06 0.05 1.22
cap132 0.00 0.00 0.01 1.54
cap133 0.00 0.00 0.04 0.75
cap134 0.00 0.00 0.00 2.98
capa 1.76 1.90 52.37 103.31
capb 1.58 1.63 21.14 42.93
capc 1.43 1.36 14.85 31.94
Avg.Gap 0.32 0.33 5.90 12.31
12.00
10.00
9.00
6.96
Speedup 6.00 5.52
3.00 3.33
0.00
4 8 16 32
Number of Threads
Figure 3. Comparison between sequential and parallel implementation of LAHC in terms of average speedup
for UFLP instances
319

