Page 66 - IJOCTA-15-2
P. 66
Multiple item economic lot sizing problem with inventory dependent demand
¨
18. Teng, J T, Chang C. Economic production quan- 33. Onal M, van den Heuvel W, Dereli M M, Albey
tity models for deteriorating items with price- E. Economic lot sizing problem with tank sched-
and stock-dependent demand. Computers and uling. Eur J Oper Res. 2023;308(1):166-182.
Operations Research. 2005;32:297-308. 34. Dziuba D, Almeder C. New construction heuris-
19. Lu L, Zhang J, Tang W. Optimal dynamic tic for capacitated lot sizing problems. Eur J
pricing and replenishment policy for perishable Oper Res. 2023;311(3):906-920.
items with inventory-level-dependent demand. 35. Absi N, van den Heuvel W, Dauz`ere-P´er`es S.
Int J Syst Sci. 2016;47(6):1480-1494. Complexity analysis of integrated dynamic lot
20. Hsieh T-P, Dye C-Y. Optimal dynamic pricing sizing and maintenance planning problems. Eur
for deteriorating items with reference price ef- J Oper Res. 2024;318(1):100-109.
fects when inventories stimulate demand. Eur J 36. Akbalik A, Gicquel C, Penz B, Rapine C. Lot siz-
Oper Res. 2017;262(1):136-150. ing with capacity adjustment using on-site green
21. Tiwari S, Jaggi C K, Bhunia A K, Shaikh and grid electricity. Omega. 2025;133:103260.
A A, Goh M. Two-warehouse inventory model 37. Kunreuther H, Schrage L. Joint pricing and
for non-instantaneous deteriorating items with inventory decisions for constant priced items.
stock-dependent demand and inflation using Manag Sci. 1973;7:732-738.
38. Heuvel van den W, Wagelmans AP M. A poly-
particle swarm optimization. Ann Oper Res.
2017;254:401–423. nomial time algorithm for a deterministic joint
pricing and inventory model. Eur J Oper Res.
22. Pervin M, Roy S K, Weber G W. Deteriorat-
2006;170(2):463-480.
ing inventory with preservation technology un-
der price- and stock-sensitive demand. J Ind 39. Geunes J, Romeijn H, Taaffe K. Requirements
Manag Optim. 2020;16:1585-1612. planning with pricing and order selection flexi-
bility. Operations Research. 2006;54:394-401.
23. Feng L, Chan Y-L, C´ardenas-Barr´on L E. Pric-
ing and lot-sizing polices for perishable goods 40. Geunes J, Merzifonluoglu Y, Romeijn H. Capac-
when the demand depends on selling price, dis- itated procurement planning with price-sensitive
demand and general concave-revenue functions.
played stocks, and expiration date. International
Journal of Production Economics. 2017;185:11- Eur J Oper Res. 2009;54:390-405.
41. Terzi M, Yalaoui A, Ouazene Y, Yalaoui F. In-
20.
tegrated lot-sizing and pricing problem under
24. Wu J, Teng J-T, Chan Y-L. Inventory policies cross-price demand model. IFAC-PapersOnLine.
for perishable products with expiration dates
2022;55(10):2372-2377. 10th IFAC Conference
and advance-cash-credit payment schemes. Int on Manufacturing Modelling, Management and
J Syst Sci: Oper Logist. 2018;5:310-326.
Control MIM 2022.
25. Li R, Teng, J-T. Pricing and lot-sizing deci- ¨
42. Onal M, Romeijn H E. Two-echelon require-
sions for perishable goods when demand depends ments planning with pricing decisions. J Ind
on selling price, reference price, product fresh- Manag Optim. 2009;5(4):767-781.
ness, and displayed stocks. Eur J Oper Res. ¨
43. Onal M, Romeijn, H E. Multi-item capacitated
2018;270:1099-1108.
lot-sizing problems with setup times and pricing
26. Sebatjane M, Adetunji O. Optimal lot-sizing
decisions. Wiley InterScience. 2010;57(2):172-
and shipment decisions in a three-echelon supply
187.
chain for growing items with inventory level- and 44. Wu X, Gong Y Y, Xu H, Chu C, Zhang J.
expiration date-dependent demand. Appl Math
Dynamic lot-sizing models with pricing for new
Model. 2021;90:1204-1225.
products. Eur J Oper Res. 2017;260:81-92.
27. Shi R, You C. Joint dynamic pricing and 45. Couzon P, Ouazene Y, Yalaoui F. Joint opti-
freshness-keeping effort strategy for perish-
mization of dynamic pricing and lot-sizing de-
able products with price-, freshness-, and cisions with nonlinear demands: Theoretical
stock-dependent demand. J Ind Manag Optim. and computational analysis. Comput Oper Res.
2023;19:6572-6592.
2020;115:104862.
28. Wagner H M, Whitin T M. Dynamic version 46. Fisher M L. The lagrangian relaxation method
of the economic lot size model. Manag Sci. for solving integer programming problems.
1958;5:89-96. Manag Sci. 1981;27:1861-1871.
29. Florian M, Klein M. Deterministic production 47. Absi N, Kedad-Sidhoum S. The multi-item ca-
planning with concave costs and capacity con- pacitated lot-sizing problem with safety stocks
straints. Manag Sci. 1971;18:12-20. and demand shortage costs. Comput Oper Res.
30. Bitran G R, Yanasse H H. Computational com- 2009;36:2926-2936.
plexity of the capacitated lot sizing problem. 48. Zhang Z-H, Jiang H, Pan X. A lagrangian re-
Manag Sci. 1982;18:1174-1186. laxation based approach for the capacitated lot
31. Hoesel van CP M, Wagelmans A. An o(t) 3 sizing problem in closed-loop supply chain. Int J
algorithm for the economic lot-sizing prob- Prod Econ. 2012;140(1):249-255.
lem with constant capacities. Manag Sci. 49. Diaby M, Bahl H C, Karwan M H, Zionts S. A la-
1996;42:142–150. grangian relaxation approach for very-large-scale
32. Fan J, Ou J. On dynamic lot sizing with capacitated lot-sizing. Manag Sci. 2012;38:1329-
bounded inventory for a perishable product. 1340.
Omega. 2023;119:102895.
261

