Page 66 - IJOCTA-15-2
P. 66

Multiple item economic lot sizing problem with inventory dependent demand
                                                                   ¨
              18. Teng, J T, Chang C. Economic production quan-  33. Onal M, van den Heuvel W, Dereli M M, Albey
                 tity models for deteriorating items with price-   E. Economic lot sizing problem with tank sched-
                 and stock-dependent demand. Computers and         uling. Eur J Oper Res. 2023;308(1):166-182.
                 Operations Research. 2005;32:297-308.         34. Dziuba D, Almeder C. New construction heuris-
              19. Lu L, Zhang J, Tang W. Optimal dynamic           tic for capacitated lot sizing problems. Eur J
                 pricing and replenishment policy for perishable   Oper Res. 2023;311(3):906-920.
                 items with inventory-level-dependent demand.  35. Absi N, van den Heuvel W, Dauz`ere-P´er`es S.
                 Int J Syst Sci. 2016;47(6):1480-1494.             Complexity analysis of integrated dynamic lot
              20. Hsieh T-P, Dye C-Y. Optimal dynamic pricing      sizing and maintenance planning problems. Eur
                 for deteriorating items with reference price ef-  J Oper Res. 2024;318(1):100-109.
                 fects when inventories stimulate demand. Eur J  36. Akbalik A, Gicquel C, Penz B, Rapine C. Lot siz-
                 Oper Res. 2017;262(1):136-150.                    ing with capacity adjustment using on-site green
              21. Tiwari S, Jaggi C K, Bhunia A K, Shaikh          and grid electricity. Omega. 2025;133:103260.
                 A A, Goh M. Two-warehouse inventory model     37. Kunreuther H, Schrage L. Joint pricing and
                 for non-instantaneous deteriorating items with    inventory decisions for constant priced items.
                 stock-dependent demand and inflation using        Manag Sci. 1973;7:732-738.
                                                               38. Heuvel van den W, Wagelmans AP M. A poly-
                 particle swarm optimization. Ann Oper Res.
                 2017;254:401–423.                                 nomial time algorithm for a deterministic joint
                                                                   pricing and inventory model. Eur J Oper Res.
              22. Pervin M, Roy S K, Weber G W. Deteriorat-
                                                                   2006;170(2):463-480.
                 ing inventory with preservation technology un-
                 der price- and stock-sensitive demand. J Ind  39. Geunes J, Romeijn H, Taaffe K. Requirements
                 Manag Optim. 2020;16:1585-1612.                   planning with pricing and order selection flexi-
                                                                   bility. Operations Research. 2006;54:394-401.
              23. Feng L, Chan Y-L, C´ardenas-Barr´on L E. Pric-
                 ing and lot-sizing polices for perishable goods  40. Geunes J, Merzifonluoglu Y, Romeijn H. Capac-
                 when the demand depends on selling price, dis-    itated procurement planning with price-sensitive
                                                                   demand and general concave-revenue functions.
                 played stocks, and expiration date. International
                 Journal of Production Economics. 2017;185:11-     Eur J Oper Res. 2009;54:390-405.
                                                               41. Terzi M, Yalaoui A, Ouazene Y, Yalaoui F. In-
                 20.
                                                                   tegrated lot-sizing and pricing problem under
              24. Wu J, Teng J-T, Chan Y-L. Inventory policies     cross-price demand model. IFAC-PapersOnLine.
                 for perishable products with expiration dates
                                                                   2022;55(10):2372-2377. 10th IFAC Conference
                 and advance-cash-credit payment schemes. Int      on Manufacturing Modelling, Management and
                 J Syst Sci: Oper Logist. 2018;5:310-326.
                                                                   Control MIM 2022.
              25. Li R, Teng, J-T. Pricing and lot-sizing deci-    ¨
                                                               42. Onal M, Romeijn H E. Two-echelon require-
                 sions for perishable goods when demand depends    ments planning with pricing decisions. J Ind
                 on selling price, reference price, product fresh-  Manag Optim. 2009;5(4):767-781.
                 ness, and displayed stocks. Eur J Oper Res.       ¨
                                                               43. Onal M, Romeijn, H E. Multi-item capacitated
                 2018;270:1099-1108.
                                                                   lot-sizing problems with setup times and pricing
              26. Sebatjane M, Adetunji O. Optimal lot-sizing
                                                                   decisions. Wiley InterScience. 2010;57(2):172-
                 and shipment decisions in a three-echelon supply
                                                                   187.
                 chain for growing items with inventory level- and  44. Wu X, Gong Y Y, Xu H, Chu C, Zhang J.
                 expiration date-dependent demand. Appl Math
                                                                   Dynamic lot-sizing models with pricing for new
                 Model. 2021;90:1204-1225.
                                                                   products. Eur J Oper Res. 2017;260:81-92.
              27. Shi R, You C. Joint dynamic pricing and      45. Couzon P, Ouazene Y, Yalaoui F. Joint opti-
                 freshness-keeping effort strategy for perish-
                                                                   mization of dynamic pricing and lot-sizing de-
                 able products with price-, freshness-, and        cisions with nonlinear demands:  Theoretical
                 stock-dependent demand. J Ind Manag Optim.        and computational analysis. Comput Oper Res.
                 2023;19:6572-6592.
                                                                   2020;115:104862.
              28. Wagner H M, Whitin T M. Dynamic version      46. Fisher M L. The lagrangian relaxation method
                 of the economic lot size model. Manag Sci.        for solving integer programming problems.
                 1958;5:89-96.                                     Manag Sci. 1981;27:1861-1871.
              29. Florian M, Klein M. Deterministic production  47. Absi N, Kedad-Sidhoum S. The multi-item ca-
                 planning with concave costs and capacity con-     pacitated lot-sizing problem with safety stocks
                 straints. Manag Sci. 1971;18:12-20.               and demand shortage costs. Comput Oper Res.
              30. Bitran G R, Yanasse H H. Computational com-      2009;36:2926-2936.
                 plexity of the capacitated lot sizing problem.  48. Zhang Z-H, Jiang H, Pan X. A lagrangian re-
                 Manag Sci. 1982;18:1174-1186.                     laxation based approach for the capacitated lot
              31. Hoesel van CP M, Wagelmans A. An o(t)   3        sizing problem in closed-loop supply chain. Int J
                 algorithm for the economic lot-sizing prob-       Prod Econ. 2012;140(1):249-255.
                 lem with constant capacities. Manag Sci.      49. Diaby M, Bahl H C, Karwan M H, Zionts S. A la-
                 1996;42:142–150.                                  grangian relaxation approach for very-large-scale
              32. Fan J, Ou J. On dynamic lot sizing with          capacitated lot-sizing. Manag Sci. 2012;38:1329-
                 bounded inventory for a perishable product.       1340.
                 Omega. 2023;119:102895.
                                                           261
   61   62   63   64   65   66   67   68   69   70   71