Page 67 - IJOCTA-15-2
P. 67

¨
                               D. Balpınarlı, M. Onal / IJOCTA, Vol.15, No.2, pp.245-263 (2025)

              50. S¨ural H, Denizel M, Wassenhove LN V. La-    65. Zhang H, Lv S, Xin D, Jin H. A genetic algo-
                 grangean relaxation based heuristics for lot      rithm enhanced with neighborhood structure for
                 sizing with setup times. Eur J Oper Res.          general flexible job shop scheduling with paral-
                 2009;194(1):51-63.                                lel batch processing machine. Expert Syst Appl.
              51. Ali S, Gupta O K. Lagrangian relaxation proce-   2025;265:125888.
                 dure for the capacitated dynamic lot sizing prob-  66. Moreno F, Forcael E, Orozco F, Baesler F, Ag-
                 lem. In 13 th  AIMS Int J Manag. 2005;9:51–63.    das D. Fixed start method for repetitive project
              52. Cai J, Huang Y, Diao C, Jin Z. Joint opti-       scheduling with simulated annealing. Heliyon.
                 mization of empty container repositioning and     2025;11(2):41741.
                 inventory control applying dynamic program-   67. Sharma H, Galv´an E, Mooney P. A parallel ge-
                 ming and simulated annealing. Appl Soft Com-      netic algorithm for multi-criteria path routing
                 put. 2024;167:112452.                             on complex real-world road networks. Appl Soft
              53. Xie J, Gao L, Li X, Gui L. A hybrid ge-          Comput. 2025;170:112559.
                 netic tabu search algorithm for distributed job-  68. Chandrashekhar M, Dhal P. Multi-objective eco-
                 shop scheduling problems. Swarm Evol Comput.      nomic and emission dispatch problems using hy-
                 2024;90:101670.                                   brid honey bee simulated annealing. Meas: Sens.
                                                                   2024;32:101065.
              54. Yao Y, Gui L, Li X, Gao L. Tabu search based
                 on novel neighborhood structures for solving  69. Bektur G, Aslan H K. Artificial bee colony al-
                 job shop scheduling problem integrating finite    gorithm for operating room scheduling problem
                                                                   with dedicated/flexible resources and coopera-
                 transportation resources. Robot Comput-Integr
                 Manuf. 2024;89:102782.                            tive operations. Int J Optim Control: Theor
                                                                   Appl (IJOCTA). 2024;14(3):193–207.
              55. Qian L, Melachrinoudis E. An integrated neural
                                                                   ¨
                                                               70. Ozdamar L, Barbaroso˘glu G. Hybrid heuristics
                 combinatorial tabu search for optimizing school
                 bus scheduling with bell time. Transp Res Part    for the multi-stage capacitated lot sizing and
                 C Emerg. 2024;164:104662.                         loading problem. J Oper Res Soc. 1999;50:810-
                                                                   825.
              56. Xiao D, Li J, Zhang Z, Gu Z, Fu Y, Niu J. Opti-
                 mization of personnel evacuation routes for sud-  71. Ajmera R. A review of applications of ge-
                                                                   netic algorithms in lot sizing. J Intell Manuf.
                 den nuclear accidents based on hybrid genetic-
                                                                   2010;21:575–590.
                 grey wolf optimizer algorithm. Nucl Eng Tech-
                 nol. 2024;103223.                             72. Gopalakrishnan M, Ding K, Bourjolly J-M, Mo-
                                                                   han S. A tabu-search heuristic for the capaci-
              57. Rosati R M, Schaerf A. Multi-neighborhood sim-   tated lot-sizing problem with set-up carryover.
                 ulated annealing for the capacitated dispersion   Manag Sci. 2001;47:851–863.
                 problem. Expert Syst Appl. 2024;255:124484.
                                                               73. Pi˜neyro P, Viera O. The economic lot-sizing
              58. Niroumandrad N, Lahrichi N, Lodi A. Learning     problem with remanufacturing: analysis and an
                 tabu search algorithms: A scheduling applica-     improved algorithm. J Reman. 2015;5(12):1-13.
                 tion. Comput Oper Res. 2024;170:106751.
                                                               74. Kuik R, Salomon M, Wassenhove LN V, Maes
              59. Ban H-B, Pham D-H. A multi-population multi-     J. Linear programming, simulated annealing
                 tasking tabu search with variable neighborhood
                                                                   and tabu search heuristics for lot sizing in
                 search algorithm to solve post-disaster clustered
                                                                   bottleneck assembly systems. IIE Transactions.
                 repairman problem with priorities. Appl Soft      1993;25(1):62-72.
                 Comput. 2025;170:112655.
                                                               75. Hindi K. Solving the single-item, capacitated dy-
              60. Hao L, Zou Z, Liang X. Solving multi-objective   namic lot-sizing problem with startup and reser-
                 energy-saving flexible job shop scheduling prob-  vation costs by tabu search. Comput Ind Eng.
                 lem by hybrid search genetic algorithm. Comput    1995;28(4):701-707.
                 Ind Eng. 2025;110829.                         76. Kimms A. Competitive methods for multi-
              61. Shi K, Yang L, Wu Z, Jiang B, Gao Q.             level lot sizing and scheduling:  tabu search
                 Multi-robot dynamic path planning with pri-       and randomized regrets. Int J Prod Res.
                 ority based on simulated annealing. J Franklin    1996;34(8):2279-2298.
                 Inst. 2025;362(1):107396.                     77. Hindi K S. Solving the clsp by a tabu search
              62. Chen X, Li J, Wang Z, Li J, Gao K. A genetic     heuristic. J Oper Res Soc. 1996;47(1):151-161.
                 programming based cooperative evolutionary al-  78. Mohan G, Ding K, Bourjolly j-m, Mohan S.
                 gorithm for flexible job shop with crane trans-   A tabu-search heuristic for the capacitated lot-
                 portation and setup times. Appl Soft Comput.      sizing problem with set-up carryover. Manage-
                 2025;169:112614.                                  ment Science. 2001;47:851-863.
              63. Dong X, Ma L, Zhao X, Shan Y, Wang J, Xu Z.  79. Hung Y-F, Chen C-P, Chuang S-C, Hung M-
                 Hybrid genetic algorithm with wiener process for  H. Using tabu search with ranking candidate
                 multi-scale colored balanced traveling salesman   list to solve production planning problems with
                 problem. Expert Syst Appl. 2025;262:125610.       setups. Computers & Industrial Engineering.
              64. Wang H-K, Yang T-Y, Wang Y-H, Wu C-L.            2003;45:615-634.
                 Hybrid dispatching and genetic algorithm for
                                                                                          ˙
                                                               80. Ta¸s D Stokastik s¨ureler I¸ceren kapasite kısıtlı
                 the surface mount technology scheduling prob-
                                                                   parti b¨uy¨ukl¨u˘g¨u belirleme problemi. Avrupa
                 lem in semiconductor factories. Int J Prod Econ.
                 2025;280:109500.                                  Bilim ve Teknoloji Dergisi. 2019;16:441–453.
                                                           262
   62   63   64   65   66   67   68   69   70   71   72