Page 142 - IJOCTA-15-3
P. 142

Srinivasarao Thota et al. / IJOCTA, Vol.15, No.3, pp.503-516 (2025)
            Conflict of interest                              10. Thota S, Awad MM, Shanmugasundaram P. A
                                                                  derivative-free root-finding algorithm using expo-
            The authors declare that they have no competing
                                                                  nential method and its implementation. BMC Res
            interests.
                                                                  Notes. 2023;16:276.
                                                                  https://doi.org/10.1186/s13104-023-06554-1
            Author contributions                              11. Thota S, Gemechu T, Ayoade AA. On new hybrid
                                                                  root-finding algorithms for solving transcendental
            Conceptualization: Srinivasarao Thota
                                                                  equations using exponential and halley’s methods.
            Formal analysis: Amir Naseem, Thumati Gopi,           Ural Math J. 2023; 9(1):176-186.
            Kashireddy Sai Nandan Reddy, Padarthi Sai             http://dx.doi.org/10.15826/umj.2023.1.016
            Kousik                                            12. Thota S, Gemechu T, Shanmugasundaram P.
            Investigation: Thulasi Bikku, Amir Naseem             New algorithms for computing non-linear equa-
            Methodology: Srinivasarao Thota, Amir Naseem          tions using exponential series. Palestine J Math.
            Writing – original draft: Srinivasarao Thota          2021; 10(1): 128-134.
            Writing – review & editing: Thulasi Bikku, Shan-  13. Thota S. A new root-finding algorithm using ex-
            mugasundaram Palanisamy                               ponential series. Ural Math J. 2022;5(1):83-90.
                                                                  https://doi.org/10.15826/umj.2019.1.008
                                                              14. Thota S. A New Hybrid Halley-False Position
            Availability of data
                                                                  type Root Finding Algorithm to Solve Transcen-
            The datasets generated and analyzed during the        dental Equations. Istanbul International Modern
            current study are presented in this manuscript.       Scientific Research Congress-III, 06-08 May 2022,
                                                                  Istanbul Gedik University, Istanbul, Turkey.
                                                              15. Chen D, Argyros IK, Qian QS. A note on the Hal-
            References
                                                                  ley method in Banach spaces. Appl Math Comput.
              1. Traub JF. Iterative Methods for the Solution of  1983;58:215-224.
                Equations, vol. 312. Providence, RI, USA: Amer-  16. Noor MA, Khan WA, Hussain A. A new mod-
                ican Mathematical Society; 1982.                  ified Halley method without second derivatives
              2. Rafiullah M. A fifth-order iterative method for  for nonlinear equation. Appl Math Comput.
                solving nonlinear equations. Numer Anal Appl.     2007;189:1268-1273.
                2011; 4: 239-243.                                 https://doi.org/10.1016/j.amc.2006.12.011
                https://doi.org/10.1134/S1995423911030062     17. ‘Cordero A, Hueso JL, Mart´ınez E, Torregrosa
              3. Ganji DD. The application of He’s homotopy per-  JR. A modified Newton–Jarratt’s composition.
                turbation method to nonlinear equations arising   Numer Algorithms. 2010; 55:87–99.
                in heat transfer. Phys Lett A. 2006;355:337-341.  https://doi.org/10.1007/s11075-009-9359-z
                https://doi.org/10.1016/j.physleta.2006.02.056  18. Thota S, Ayoade AA. A new numerical algo-
              4. Thota S, Shanmugasundaram P. On new sixth        rithm to compute a root of non-linear equations
                and seventh order iterative methods for solving   using exponential method. interplay of fractals
                non-linear equations using homotopy perturba-     and complexity in mathematical modelling and
                tion technique. BMC Res Notes. 2022;15:267.       physical patterns. In: ISMAFDS 2023. Cham:
                https://doi.org/10.1186/s13104-022-06154-5        Springer; 2025.
              5. Abbasbandy  S.  Improving  Newton–Raphson        https://doi.org/10.1007/978-3-031-58641-5 2 8
                method for nonlinear equations by modified Ado-  19. Noor MA, Noor KI, Al-Said E, Waseem M. Some
                mian decomposition method. Appl Math Comput.      new iterative methods for nonlinear equations.
                2003; 145:887-893.                                Math Probl Eng . 2010; 198943.
                https://doi.org/10.1016/S0096-3003(03)00282-0     https://doi.org/10.1155/2010/198943
              6. He JH, Wu XH. Variational iteration method:  20. Noor MA, Noor KI. Three-step iterative methods
                new development and applications. Comput Math     for nonlinear equations. Appl Math Comput. 2006;
                Appl 2007;54:881-894.                             183:322-327.
                https://doi.org/10.1016/j.camwa.2006.12.083       https://doi.org/10.1016/j.amc.2006.05.055
              7. Tari H, Ganji DD, Babazadeh H. The application  21. Shah FA, Noor MA, Waseem M. Some second-
                of He’s variational iteration method to nonlinear  derivative-free sixth-order convergent iterative
                equations arising in heat transfer. Phys Lett A.  methods for non-linear equations. Maejo Int J Sci
                2007;363:213-217.                                 Technol. 2016; 10(01):79-87.
                https://doi.org/10.1016/j.physleta.2006.11.005    https://doi.org/10.14456/mijst.2016.7
              8. Noor MA, Waseem M. Some iterative methods for  22. Abro HA, Shaikh MM. A new time-efficient and
                solving a system of nonlinear equations. Comput   convergent nonlinear solver. Appl Math Comput.
                Math Appl. 2009;57:101-106.                       2019; 355:516-536.
                https://doi.org/10.1016/j.camwa.2008.10.067       https://doi.org/10.1016/j.amc.2019.03.012
              9. Zafar F, Mir NA. A generalized family of     23. Torregrosa JR, Argyros IK, Chun C, Cordero
                quadrature based iterative methods. Gen Math.     A, Soleymani F. Iterative methods for nonlinear
                2010;18:43-51.                                    equations or systems and their applications 2014.
                                                           514
   137   138   139   140   141   142   143   144   145   146   147