Page 143 - IJOCTA-15-3
P. 143
A novel ninth-order root-finding algorithm for nonlinear equations with implementations in various ...
J Appl Math. 2014; 2014: 293263. 36. Aggarwal A, Pant S. Beyond newton: a new root-
https://doi.org/10.1155/2014/293263 finding fixed-point iteration for nonlinear equa-
24. Darvishi MT, Barati A. A third-order Newton- tions. Algorithms. 2020;13(4):78.
type method to solve systems of nonlinear equa- https://doi.org/10.3390/a13040078
tions. Appl Math Comput. 2007; 187:630-635. 37. Mittal SK, Panday S, J¨antschi L. Enhanced
https://doi.org/10.1016/j.amc.2006.08.080 ninth-order memory-based iterative technique for
25. Qureshi S, Ramos H, Soomro AK. A new non- efficiently solving nonlinear equations. Mathemat-
linear ninth-order root-finding method with error ics. 2024;12(22): 3490.
analysis and basins of attraction. Mathematics. https://doi.org/10.3390/math12223490
2021;9(16):1996. 38. Kalantari B, Hans Lee E. Newton–ellipsoid poly-
https://doi.org/10.3390/math9161996 nomiography. J Mathnd the Arts. 2019;13(4):
26. Okawa H, Fujisawa K, Yamamoto Y, et al. 336-352.
The W4 method: a new multi-dimensional root- https://doi.org/10.1080/17513472.2019.1600959
finding scheme for nonlinear systems of equations. 39. Iliev A, Kyurkchiev N. Nontrivial Methods in Nu-
Appl Numer Math. 2023; 183: 157-172. merical Analysis: Selected Topics in Numerical
https://doi.org/10.1016/j.apnum.2022.08.019 Analysis. Saarbrucken: LAP LAMBERT Aca-
27. Thota S, Gopisairam T. On a symbolic method demic Publishing; 2010: 256. ISBN:978-3-8433-
for second-order boundary value problems over al- 6793-6.
gebras. Int J Appl Math. 2024;37(6):577-590. 40. Ignatova B, Kyurkchiev N, Iliev A. Multipoint
http://dx.doi.org/10.12732/ijam.v37i6.1 algorithms arising from optimal in the sense of
28. Srivastav VK, Thota S, Kumar M. A new trigono- Kung-Traub iterative procedures for numerical
metrical algorithm for computing real root of non- solution of nonlinear equations. Gen Math Notes.
linear transcendental equations. Int J Appl Com- 2012;6(2): 45-79.
put Math. 2019; 5:44. 41. Kyurkchiev N, Iliev A. On some multipoint meth-
https://doi.org/10.1007/s40819-019-0600-8 ods arising from optimal in the sense of Kung-
29. Thota S, Krishna CB, Ayoade AA, Bikku T. On Traub algorithms. Int J Math Methods Models
a new hybrid root-finding algorithm for solving Biosci. 2013; 2(1):12-18.
nonlinear equations with implementation in excel 42. Hristov V, Iliev A, Kyurkchiev N. A note on
and maple. J Basic Sci. 2024; 24(7): 270-277. the convergence of nonstationary finite–difference
https://doi.org/10.37896/JBSV24.7/3250 analogues. Comput Math Math Phys. 2005;
30. Naseem A, Rehman MA, Abdeljawad T. A novel 45:194-201.
root-finding algorithm with engineering applica- 43. S. Thota, Krishna CB, Ayoade AA, Bikku T. On
tions and its dynamics via computer technology. A New Hybrid Root-Finding Algorithm for Solv-
IEEE Access. 2022;10:19677-19684. ing Nonlinear Equations with Implementation in
https://doi.org/10.1109/ACCESS.2022. Excel and Maple. J Basic Sci. 2024;24(7):270-277.
3150775 https://doi.org/10.37896/JBSV24.7/3250
31. Thota S, Srivastav VK. Quadratically conver- 44. Petkovic M, Neta B, Petkovic L, Dzunic J. Mul-
gent algorithm for computing real root of non- tipoint Methods for Solving Nonlinear Equations.
linear transcendental equations. BMC Res Notes. Oxford, UK: Academic press; 2013.
2018;11:909. 45. Gdawiec K. Fractal patterns from the dy-
https://doi.org/10.1186/s13104-018-4008-z namics of combined polynomial root finding
32. Etesami R, Madadi M, Mashinchi M, Ganjoei method s. Nonlinear Dyn. 2017;90(4):2457-2479.
RA. A new method for rooting nonlinear equa- https://doi.org/10.1007/s11071-017-3813-6
tions based on the Bisection method. MethodsX 46. Kang SM, Naseem A, Nazeer W, Munir M, Yong
2021;8:101502. C. Polynomiography via modified Abbasbanday’s
https://doi.org/10.1016/j.mex.2021.101502 method. Int J Math Anal. 2017;11(3):133-149.
33. Thota S. A numerical algorithm to find a root of https://www.researchgate.net/publication/
non-linear equations using householder’s method. 299535865 POLYNOMIOGRAPHY VIA
Int J Adv Appl Sci. 2021; 10(2): 141-148. MODIFIED GOLBABAI AND JAVIDI’S
http://doi.org/10.11591/ijaas.v10.i2. METHOD
pp141-148 47. Thota S, Krishna CB. A root finding algo-
34. Chueca-D´ıez F, Ga˜n´an-Calvo AM. A fast numer- rithm for transcendental equations using hy-
ical algorithm for finding all real solutions to a perbolic tangent function. AIP Conf Proc.
system of N nonlinear equations in a finite do- 2024;2971:060012.
main. Numer Algor 2024. https://doi.org/10.1063/5.0195773
https://doi.org/10.1007/s11075-024-01908-7
35. Naseem A, Rehman MA, Abdeljawad T. Real- Srinivasarao Thota completed his M.Sc. in Mathe-
world applications of a newly designed root- matics from the Indian Institute of Technology (IIT)
finding algorithm and its polynomiography. IEEE Madras, India, and Ph.D. in Mathematics from Moti-
Access. 2021;9: 160868-160877. lal Nehru National Institute of Technology (NIT) Al-
https://doi.org/10.1109/ACCESS.2021.3131498 lahabad, India. Dr. Thota’s areas of research interest
515

