Page 143 - IJOCTA-15-3
P. 143

A novel ninth-order root-finding algorithm for nonlinear equations with implementations in various ...

                J Appl Math. 2014; 2014: 293263.              36. Aggarwal A, Pant S. Beyond newton: a new root-
                https://doi.org/10.1155/2014/293263               finding fixed-point iteration for nonlinear equa-
             24. Darvishi MT, Barati A. A third-order Newton-     tions. Algorithms. 2020;13(4):78.
                type method to solve systems of nonlinear equa-   https://doi.org/10.3390/a13040078
                tions. Appl Math Comput. 2007; 187:630-635.   37. Mittal SK, Panday S, J¨antschi L. Enhanced
                https://doi.org/10.1016/j.amc.2006.08.080         ninth-order memory-based iterative technique for
             25. Qureshi S, Ramos H, Soomro AK. A new non-        efficiently solving nonlinear equations. Mathemat-
                linear ninth-order root-finding method with error  ics. 2024;12(22): 3490.
                analysis and basins of attraction. Mathematics.   https://doi.org/10.3390/math12223490
                2021;9(16):1996.                              38. Kalantari B, Hans Lee E. Newton–ellipsoid poly-
                https://doi.org/10.3390/math9161996               nomiography. J Mathnd the Arts. 2019;13(4):
             26. Okawa H, Fujisawa K, Yamamoto Y, et al.          336-352.
                The W4 method: a new multi-dimensional root-      https://doi.org/10.1080/17513472.2019.1600959
                finding scheme for nonlinear systems of equations.  39. Iliev A, Kyurkchiev N. Nontrivial Methods in Nu-
                Appl Numer Math. 2023; 183: 157-172.              merical Analysis: Selected Topics in Numerical
                https://doi.org/10.1016/j.apnum.2022.08.019       Analysis. Saarbrucken: LAP LAMBERT Aca-
             27. Thota S, Gopisairam T. On a symbolic method      demic Publishing; 2010: 256. ISBN:978-3-8433-
                for second-order boundary value problems over al-  6793-6.
                gebras. Int J Appl Math. 2024;37(6):577-590.  40. Ignatova B, Kyurkchiev N, Iliev A. Multipoint
                http://dx.doi.org/10.12732/ijam.v37i6.1           algorithms arising from optimal in the sense of
             28. Srivastav VK, Thota S, Kumar M. A new trigono-   Kung-Traub iterative procedures for numerical
                metrical algorithm for computing real root of non-  solution of nonlinear equations. Gen Math Notes.
                linear transcendental equations. Int J Appl Com-  2012;6(2): 45-79.
                put Math. 2019; 5:44.                         41. Kyurkchiev N, Iliev A. On some multipoint meth-
                https://doi.org/10.1007/s40819-019-0600-8         ods arising from optimal in the sense of Kung-
             29. Thota S, Krishna CB, Ayoade AA, Bikku T. On      Traub algorithms. Int J Math Methods Models
                a new hybrid root-finding algorithm for solving   Biosci. 2013; 2(1):12-18.
                nonlinear equations with implementation in excel  42. Hristov V, Iliev A, Kyurkchiev N. A note on
                and maple. J Basic Sci. 2024; 24(7): 270-277.     the convergence of nonstationary finite–difference
                https://doi.org/10.37896/JBSV24.7/3250            analogues. Comput Math Math Phys. 2005;
             30. Naseem A, Rehman MA, Abdeljawad T. A novel       45:194-201.
                root-finding algorithm with engineering applica-  43. S. Thota, Krishna CB, Ayoade AA, Bikku T. On
                tions and its dynamics via computer technology.   A New Hybrid Root-Finding Algorithm for Solv-
                IEEE Access. 2022;10:19677-19684.                 ing Nonlinear Equations with Implementation in
                https://doi.org/10.1109/ACCESS.2022.              Excel and Maple. J Basic Sci. 2024;24(7):270-277.
                3150775                                           https://doi.org/10.37896/JBSV24.7/3250
             31. Thota S, Srivastav VK. Quadratically conver-  44. Petkovic M, Neta B, Petkovic L, Dzunic J. Mul-
                gent algorithm for computing real root of non-    tipoint Methods for Solving Nonlinear Equations.
                linear transcendental equations. BMC Res Notes.   Oxford, UK: Academic press; 2013.
                2018;11:909.                                  45. Gdawiec K. Fractal patterns from the dy-
                https://doi.org/10.1186/s13104-018-4008-z         namics of combined polynomial root finding
             32. Etesami R, Madadi M, Mashinchi M, Ganjoei        method s. Nonlinear Dyn. 2017;90(4):2457-2479.
                RA. A new method for rooting nonlinear equa-      https://doi.org/10.1007/s11071-017-3813-6
                tions based on the Bisection method. MethodsX  46. Kang SM, Naseem A, Nazeer W, Munir M, Yong
                2021;8:101502.                                    C. Polynomiography via modified Abbasbanday’s
                https://doi.org/10.1016/j.mex.2021.101502         method. Int J Math Anal. 2017;11(3):133-149.
             33. Thota S. A numerical algorithm to find a root of  https://www.researchgate.net/publication/
                non-linear equations using householder’s method.  299535865 POLYNOMIOGRAPHY VIA
                Int J Adv Appl Sci. 2021; 10(2): 141-148.          MODIFIED GOLBABAI AND JAVIDI’S
                http://doi.org/10.11591/ijaas.v10.i2.              METHOD
                pp141-148                                     47. Thota S, Krishna CB. A root finding algo-
             34. Chueca-D´ıez F, Ga˜n´an-Calvo AM. A fast numer-  rithm for transcendental equations using hy-
                ical algorithm for finding all real solutions to a  perbolic tangent function. AIP Conf Proc.
                system of N nonlinear equations in a finite do-   2024;2971:060012.
                main. Numer Algor 2024.                           https://doi.org/10.1063/5.0195773
                https://doi.org/10.1007/s11075-024-01908-7
             35. Naseem A, Rehman MA, Abdeljawad T. Real-     Srinivasarao Thota completed his M.Sc. in Mathe-
                world applications of a newly designed root-  matics from the Indian Institute of Technology (IIT)
                finding algorithm and its polynomiography. IEEE  Madras, India, and Ph.D. in Mathematics from Moti-
                Access. 2021;9: 160868-160877.                lal Nehru National Institute of Technology (NIT) Al-
                https://doi.org/10.1109/ACCESS.2021.3131498   lahabad, India. Dr. Thota’s areas of research interest
                                                           515
   138   139   140   141   142   143   144   145   146   147   148