Page 44 - IJOCTA-15-3
P. 44

M. Aychluh et.al. / IJOCTA, Vol.15, No.3, pp.407-425 (2025)

            3.2.3. Endemic equilibrium point
                                                                                 α 1 γ 1 − ℘ − ψ
                                                                  υ
                                                               ∗ D L(t) = α 2 γ 2 M           − (λ + ς + ψ)M
                                                                  t
            Adjusting the model equation to zero and solve                           α 1 γ 1
            simultaneously, we get the endemic equilibrium
                                    ∗
                          ∗
                    ∗
                               ∗
                                        ∗
                                            ∗
            point E = (N , A , M , P , R ). where              +α 2 γ 3 P  α 1 γ 1 − ℘ − ψ  − (κ + ζ + ψ)P
                                                                           α 1 γ 1
                                                                                                              .
                      cΛ                                       = (ℜ0 − 1)(λ + ς + ψ)M
                ∗
             M =          , where c = κ + δ + ζ + ψ
                    α 3 γ 3 ψ
                                                                       α 1 γ 1 − ℘ − ψ

                                  cΛ                           + α 2 γ 3            − (κ + ζ + ψ) P
                              ∗
                   (d + α 3 γ 3 P )    − δP ∗                              α 1 γ 1
               ∗
             A =               α 3 γ 3 ψ    , d = ς + λ + ψ
                           cγ 2   ψγ 3  ∗
                      α 2       +     P                           All the model parameters are nonnegative;
                                                                             ∗
                                                                                υ
                          α 3 γ 3  Λ                          it follows that D L(t) ≤ 0 for R 0 < 1 and
                                                                                t
                                                                   α 1 γ 1 − ℘ − ψ
                                                                                                  υ
                                                                                               ∗
                                Λ                             α 2 γ 3           ≤ (κ + ζ + ψ). D L(t) = 0 if
                                                                                                  t
               ∗
             N =          ∗       ∗      ∗                             α 1 γ 1
                      γ 1 A + γ 2 M + γ 3 P                   and only if M = P = 0. Thus, by LaSalle’s invari-
                   α 1                     + ψ
                               T  ∗                           ance principle, the gambling problem-free equilib-
                      ∗
                             ∗
                   ℘A + ςM + ζP    ∗                          rium point E 0 is globally asymptotically stable in
               ∗
             R =                                              a positively invariant region if R 0 ≤ 1.
                           ψ
            and we have the following quadratic equation for
            P ∗                                               4. Numerical method
                                      1                     In this section, we use an approximation tech-
                                            ∗
                     a 1 P ∗2  − a 2 1 −   P = 0,             nique for the system in (1).  By applying the
                                      R 0
                                                              fundamental theorem of modified ABC fractional
                                   ψα 2 γ 3 2
            where a 1   =                        and b   =    calculus, system (7) can be written as:
                             Λγ 2 (κ + δ + ζ + ψ)
             (ς + λ + ψ)α 1 γ 1       ∗                ∗
                            . Since P   ̸= 0, we have P  =      
                                                                                   1 − υ
                                                                 m (t) − m (0) =
                                                                
                  α 2 γ 2
                                                                                       f (t, m (t))
             a 2      1                                                           B (υ)
                                ∗
                 1 −      and P is positive when R 0 > 1.       
                                                                
                                                                
                                                                
             a 1     R 0                                        
                                                                
                                                                        υ      R  t    υ−1
                                                                   +             0  (t − ς)  f (ς, m (ς)) dς
                                                                     B (υ) Γ (υ)
                                                                
                                                                
                                                                
            Theorem 7. The gambling problem-free equilib-       
                                                                
                                                                
                                                                    1 − υ                     γ υ   υ
            rium point E 0 is globally asymptotically stable if   −      f (0, m (0)) 1 +          t   .
                                                                
                                                                
                                                                     B (υ)                  Γ (υ + 1)
            R 0 ≤ 1 and unstable if R 0 > 1.
                                                                                                         (27)
            Proof. Assume the Lyapunov function:              We are producing a numerical scheme for this
                          L(t) = M(t) + P(t).                 system with the help of Lagrange’s interpo-
                                                              lation polynomials.   Setting t = t n+1 , n =
            Taking the modified ABC derivative both sides                              T
            and using Equation (7), we have:                  0, 1, 2, . . . , M with h =  , we have:
                                                                                       M
                                 γ 2 M + γ 3 P
                    ∗  υ
                     D L(t) = α 2           A + δP            
                      t
                                      T                                             1 − υ
                                                               m n+1 (t) = m (0) +      f (t n , m (t n ))
                                                              
                                                                                   B (υ)
                                γ 3 P                         
                                                              
                                                              
                    −(λ + ς + α 3    + ψ)M          .         
                                                              
                                  T                                   υ     R              υ−1
                                                              
                                                                 +            0 t n+1  (t n+1 − ς)  f (ς, m (ς)) dς
                        γ 3 P                                     B (υ) Γ (υ)
                                                              
                    +α 3    M − (κ + δ + ζ + ψ)P              
                         T                                    
                                                              
                                                              
                                                                  1 − υ                    γ υ    υ
                                                               −       f (0, m (0)) 1 +          t n  .
                                                              
                                                              
            At the gambling problem-free equilibrium point         B (υ)                 Γ (υ + 1)
            E 0 , we have:                                                                               (28)
                                                              or equivalently,
                                                           416
   39   40   41   42   43   44   45   46   47   48   49