Page 46 - IJOCTA-15-3
P. 46

M. Aychluh et.al. / IJOCTA, Vol.15, No.3, pp.407-425 (2025)

            Table 1. Value of the model parameters for equation (7)

                               Parameter Value      Source Parameter Value          Source
                               N 0         200    Assumed A 0            75       Assumed
                               M 0         42     Assumed P 0            14       Assumed
                               R 0         0      Assumed Λ              0.33   Calculated
                               α 1         0.7           10  λ           0.07           10
                               γ 1         0.2    Assumed ℘              0.02     Assumed
                               γ 2         0.3    Assumed ς              0.015    Assumed
                               γ 3         0.4    Assumed κ              0.34           10
                               α 2         0.5    Assumed δ              0.014    Assumed
                               α 3         0.2    Assumed ζ              0.01     Assumed
                               ψ           0.001  Assumed



            The modified fractional-order system with mABC
            derivative:                                                     γ 1 A + γ 2 M + γ 3 P
                                                                  + d A α 1 N                  + λM + κP
              ∗  υ               γ 1 A+γ 2 M+γ 3 P         
               D N(t) = Λ − α 1 N      T      − ψN                                 T
                t
                                                           
                                                           
                                                                            γ 2 M + γ 3 P
                                                           
                                                           
              ∗  υ           γ 1 A+γ 2 M+γ 3 P                   − ℘ + α 2             + ψ A
                                                           
               D A(t) = α 1 N             + λM + κP        
                t                 T                                             T
                                                           
                                                           
                                                           

                                                           
                                                                          γ 2 M + γ 3 P
                                                         
                          γ 2 M+γ 3 P                                                A + δP
                − ℘ + α 2         + ψ A                          + d M α 2
                             T                                                 T
                                                           
                                                           
                                                           

                                                           
                                                                                     γ 3 P
                                                           

              ∗  υ           γ 2 M+γ 3 P                          − λ + ς + (1 − c)α 3    + ψ M
               D M(t) = α 2            A + δP                                          T
                t               T
                                                           

                                                           
                                                                                 γ 3 P
                                                           
                                                           
                                                           
                  h                        i                                         M − (κ + δ + ζ + ψ)P
                                   γ 3 P                         + d P (1 − c)α 3
                                                           
                − λ + ς + (1 − c)α 3   + ψ M                                     T
                                    T                      
                                                           
                                                           
                                                                  + d R [℘A + ςM + ζP − ψR]              (33)
                                                           
                                                           
                                                           
                                                           
              ∗  υ               γ 3 P                     
               D P(t) = (1 − c)α 3   M − (κ + δ + ζ + ψ)P 
                                                           
                t                 T                        
                                                           
                                                           
                                                           
                                                           
              ∗  υ                                         
               D R(t) = ℘A + ςM + ζP − ψR
                t
            The main objective is to find the optimal control
                                                              where d N , d A , d M , d P and d R are adjoint vari-
            unit c(t) such that the following control objective
                                                              ables. To obtain the necessary optimality condi-
            function is minimized:
                                                              tions:
                      Z  T                   1                                                  
                                                  2
              J(u) =       A 1 M(t) + A 2 P(t) + Bc (t) dt          ∗ D Φ i (t) =  ∂H  (t)        
                                                                       υ
                                                                                                  
                                                                       t
                       0                      2                     0           ∂d Φ i            
                                                                                                  
                                                                                                  
                                                       (32)                                       
                                                                                                  
                                                                                                  
                                                                                                  
                                                                                                  
            where:                                                                ∂H
                                                                    ∗  υ   (t) = −    (t)                (34)
                                                                    0  D d Φ i
                                                                       t
                                                                                  ∂Φ i            
                                                                                                  
                                                                                                  
                                                                                                  
                                                                                                  
                  • A 1 , A 2 > 0: Weights for at-risk and ad-      ∂H                            
                                                                                                  
                                                                                                  
                    dicted populations.                                 (t) = 0, i = 1, 2, 3, 4, 5.  
                                                                                                  
                                                                     ∂c
                  • B > 0: Cost weight for control implemen-
                                                              where Φ 1 = N(t), Φ 2 = A(t), Φ 3 = M(t),
                    tation.
                                                              Φ 4 = P(t) and Φ 5 = R(t). The transversality
                  • T: Final time
                                                              conditions:
                                                                                              } .
                                                                           d i (T) = 0, i ∈ {d Φ i
            To solve the new system, we need to derive the
                                                              Accordingly, the optimal control c ∗ (t) of a new
            necessary optimality conditions for the problem.
                                                              dynamic system, which minimizes the objective
            To do this, we define the Hamiltonian function:
                                                              functional (32), is characterized by
                                                                                 c ∗ (t) =
                                      1                                                                 !    !
                                          2
             H = A 1 M(t) + A 2 P(t) + Bc (t)                                  γ 3 P(t) M(t)(d P (t) − d M (t))
                                      2                                     α 3  T
                                                            min max 0,                                  , 1 .
                                 γ 1 A + γ 2 M + γ 3 P                                   B
                  + d N Λ − α 1 N                  − ψN
                                         T                                                               (35)
                                                           418
   41   42   43   44   45   46   47   48   49   50   51