Page 42 - IJOCTA-15-3
P. 42

M. Aychluh et.al. / IJOCTA, Vol.15, No.3, pp.407-425 (2025)
                                                                                                           υ
            Proof. Differentiating  the   total  population   and for the case α = υ, β = υ + 1 and x = −ηt ,
            T(t) = N(t) + A(t) + M(t) + P(t) + R(t) with      we have
            respect to time and using equations in system (7),              υ     1                υ
            we obtain                                           E υ, υ+1 (−ηt ) =  ηt υ  (1 − E υ, 1 (−ηt )) .  (21)
                                                              The Mittag-Leffeler function is bounded for all
                      mABC    υ                               t > 0, possess an asymptotic behavior, 37  intro-
                            D T (t) ≤ Λ − ψT (t) .     (19)
                              0
                                                              ducing the relation (21) in inequality (20), it is ob-
            Applying the Laplace transform on two sides of                      Λ
            the above inequality, we obtain:                  vious that T (t) ≤   as t → ∞. Thus, N (t) and
                                                                                ψ
                                       Λ
                  mABC   υ       	                           all other variables of the system (7) are bounded
               L        D T (t) ; s ≤    − ψL {T (t) ; s}
                          0
                                       s                      in the region Ω.
                                                              Theorem 5. If the set of initial conditions
                          υ
                    B (υ) s L {T (t) ; s}                     {N(0) ≥ 0, A(0) ≥ 0, M(0) ≥ 0, P(0) ≥
                 ⇒                     + ψL {T (t) ; s}       0, R(0) ≥ 0} ∈ R      5  then, the solutions of
                       υ + (1 − υ) s υ                                              +
                                                              N(t), A(t), M(t), P(t), and R(t) are non-
                                   B (υ) T (0) s υ−1
                          υ−(υ+1)
                     ≤ Λs        +                .           negative for all t ≥ 0.
                                    υ + (1 − υ) s υ
                                                              Proof. Assume that all the state variables of the
            Implies
                                                              model are continuous. Consider the first equation
                                          Λυ
                    L {T (t) ; s} ≤                           of the system (7):
                                   B (υ) + (1 − υ) ψ
                                                                                      γ 1 A + γ 2 M + γ 3 P
                                                                     υ
                                                              mABC D N (t) = Λ−α 1 N                   −ψN.
                                 s υ−(υ+1)                           0                        T
                        ×
                                      υψ                                                                 (22)
                           υ
                          s +                                 Since,  all the solutions are bounded,      let
                               B (υ) + (1 − υ) ψ
                                                              γ 1 A + γ 2 M + γ 3 P
                                                                                is bounded by σ. Then,
                                                                    T
                       Λ (1 − υ)         B (υ) T (0)
               +                    +                                      mABC   υ
                   B (υ) + (1 − υ) ψ  B (υ) + (1 − υ) ψ                         D N (t) ≥ −aN,           (23)
                                                                                  0
                                                              where a = α 1 σ + ψ. Applying the Laplace trans-
                                  s υ−1
                        ×            υψ        .              form in Eq. (23) and using Eq. (4), we have:
                           υ
                          s +
                                                                            υ
                               B (υ) + (1 − υ) ψ                        "  s L {N (t) ; s} − N (0) s υ−1  #
                                                                   B (υ)
            Applying the inverse Laplace, we arrive at:                             υ     υ
                                                                   1 − υ           s +
                             Λυ                                                         1 − υ
                                                   υ
               T (t) ≤                 E υ, υ+1 (−ηt )
                      B (υ) + (1 − υ) ψ                                       ≥ −aL {N (t)} .
                                                              Further simplification gives:
                        1                              (20)              υ                           υ−1
               +                                                   B (υ) s L {N (t) ; s}  B (υ) N (0) s
                 B (υ) + (1 − υ) ψ                                                     −
                                                                      υ + (1 − υ) s υ     υ + (1 − υ) s υ
                                                  υ
               × (Λ (1 − υ) + B (υ) T (0)) E υ, 1 (−ηt ) ,
                                                                              ≥ −aL {N (t)} .
                                    υψ                                   υ                 υ
                where η =                      and E α, β (.)     [B (υ) s + aυ + a (1 − υ) s ] L {N (t) ; s}
                             B (υ) + (1 − υ) µ                                       υ−1
            is the Mittag-Leffler function of two parameters                 ≥ B (υ) s   N (0)
            α > 0 and β > 0 defined as:
                                   ∞                                            B (υ) N (0)           s υ−1
                                  X       x i                 L {N (t) ; s} ≥                                     .
                       E α, β (χ) =             ,                            B (υ) + a (1 − υ) υ         aυ
                                      Γ (αi + β)                                             s +
                                   i=0                                                            B (υ) + a (1 − υ)
            whose Laplace transform is                        Taking the inverse Laplace transform in the above
                    n                     o    s α−β          inequality, we obtain:
                                     α
                   L χ β−1 E α, β (∓ηχ ) ; s =                                                        υ
                                                α
                                               s ± η                     B (υ) N (0)              −aυt
                                                              N (t) ≥                 E υ, 1                   .
            provided that s > |η| 1/α . The Mittag-Leffler func-      B (υ) + a (1 − υ)      B (υ) + a (1 − υ)
            tion satisfies                                                         aυ
                                                              Since E υ, 1 −                 t υ   > 0 and
                             E α, β−α (χ)       1                            B (υ) + a (1 − υ)
                 E α, β (χ) =            −           ,
                                  χ        χΓ (β − α)         N (0) > 0, then N (t) ≥ 0. In the same way,
                                                           414
   37   38   39   40   41   42   43   44   45   46   47