Page 225 - IJOCTA-15-4
P. 225

Data-driven optimization and parameter estimation for an epidemic model

             99. Kirkcaldy RD, Weston E, Segurado AC, Hughes      Comput Biol Med. 2021;134:104369.
                G. Epidemiology of gonorrhoea: A global per-      http://dx.doi.org/10.1016/j.compbiomed.2021.
                spective. Sex Health. 2019;16(5):401-411.         104369
                http://dx.doi.org/10.1071/SH19061             111. Gogolewski K, Miasojedow B, Sadkowska-Todys
            100. Elder H, Platt L, Leach D, et al. Factors associ-  M, et al. Data-driven case fatality rate estimation
                ated with delays in presentation and treatment of  for the primary lineage of SARS-CoV-2 in Poland.
                gonorrhea, Massachusetts 2015-2019. Sex Transm    Methods. 2022;203:584-593.
                Dis. 2023;50(10):1097.                            http://dx.doi.org/10.1016/j.ymeth.2022.01.006
                http://dx.doi.org/10.1097/OLQ.0000000000001917 112. Rosi´nska M, Czarkowski MP, Sadkowska-Todys
            101. Ru˜ao T, Silva SCM. Strategic science commu-     M. Infectious diseases in Poland in 2021. Epi-
                nication: The “flatten the curve” metaphor in     demiol Rev/Przegl Epidemiol. 2023;77(4):411.
                COVID-19 public risk messaging. In: Balonas S,    http://dx.doi.org/10.32394/pe.77.36
                Ru˜ao T, Carrillo-Dur´an M-V, eds. Strategic Com-  113. Generalna Dyrekcja Dr´og Krajowych i Au-
                munication in Context: Theoretical Debates and    tostrad. Ruch Drogowy 2020/2021. Warszawa:
                Applied Research. UMinho Editora/Centro de Es-    Heller Consult; 2022. Available from:
                tudos de Comunica¸c˜ao e Sociedade; 2021:175-211.  https://www.gov.pl/web/gddkia/generalny-
                http://dx.doi.org/10.21814/uminho.ed.46.9         pomiar-ruchu-20202021
            102. Amidon TR, Nielsen AC, Pflugfelder EH,       114. McMahon T, Havlin S, Gallos LK. Effect of
                Richards DP, Stephens SH. Visual risk literacy    cities and distance on COVID-19 spreading in the
                in “flatten the curve” COVID-19 visualizations. J  United States. Phys Rev E. 2023;107(3):034302.
                Bus Tech Commun. 2021;35(1):101-109.              http://dx.doi.org/10.1103/PhysRevE.107.034302
                http://dx.doi.org/10.1177/1050651920963439    115. G l´owny Urzad Statystyczny (National Statistics
            103. Pana TA, Bhattacharya S, Gamble DT, et al.       Office of Poland). Ludno´s´c w rejonach statysty-
                Country-level determinants of the severity of the  cznych i obwodach spisowych wed lug p lci, eko-
                first global wave of the COVID-19 pandemic: An    nomicznych i 10-letnich grup wieku; 2021.
                ecological study. BMJ Open. 2021;11(2):e042034.  116. Morris MD. Factorial sampling plans for prelimi-
                http://dx.doi.org/10.1136/bmjopen-2020-042034     nary computational experiments. Technometrics.
            104. Baird CE, Lake D, Panagiotou OA, Gozalo P.       1991;33(2):161-174.
                County-level mandates were generally effective    http://dx.doi.org/10.1080/00401706.1991.10484804
                at slowing COVID-19 transmission: Study ex-   117. Qian G, Mahdi A. Sensitivity analysis meth-
                amines county-level public health mandates and    ods in the biomedical sciences. Math Biosci.
                COVID-19 transmission. Health Aff (Millwood).     2020;323:108306.
                2024;43(3):433-442.                               http://dx.doi.org/10.1016/j.mbs.2020.108306
                http://dx.doi.org/10.1377/hlthaff.2023.00431  118. Herman JD, Kollat JB, Reed PM, Wagener T.
            105. Sleator RD, Smith N. COVID-19: did the masks     Technical note: Method of Morris effectively re-
                work? Future Microbiol. 2024;19(11):997-1002.     duces the computational demands of global sensi-
                http://dx.doi.org/10.1080/17460913.2024.2343558   tivity analysis for distributed watershed models.
            106. Wielechowski M, Czech K, Grzeda  L. Decline      Hydrol Earth Syst Sci. 2013;17(7):2893-2903.
                in mobility: public transport in Poland in the    http://dx.doi.org/10.5194/hess-17-2893-2013
                time of the COVID-19 pandemic. Economies.     119. Sobol IM. Global sensitivity indices for non-
                2020;8(4):78.                                     linear mathematical models and their Monte
                http://dx.doi.org/10.3390/economies8040078        Carlo estimates. Math Comput Simul. 2001;55(1-
            107. Dur´on   C,    Kravitz    H,    Brio    M.       3):271-280.
                Kolmogorov–Smirnov-based edge centrality mea-     http://dx.doi.org/10.1016/S0378-4754(00)00270-
                sure for metric graphs. Dynamics. 2025;5(2):16.   6
                http://dx.doi.org/10.3390/dynamics5020016     120. Helton JC, Davis FJ. Latin hypercube sampling
            108. Oke M, Ogunmiloro O, Akinwumi C, Raji R.         and the propagation of uncertainty in analy-
                Mathematical modeling and stability analysis of   ses of complex systems. Reliab Eng Syst Saf.
                a SIRV epidemic model with non-linear force of    2003;81(1):23-69.
                infection and treatment. Commun Math Appl.        http://dx.doi.org/10.1016/S0951-8320(03)00058-
                2019;10(4):717-731.                               9
                http://dx.doi.org/10.26713/cma.v10i4.1172     121. Fung IC-H, Antia R, Handel A. How to min-
            109. Zareba A, Widawski K, Ko lodziejczyk K,          imize the attack rate during multiple influenza
                Krzemi´nska A, Marek A, Rozenkiewicz A. City      outbreaks in a heterogeneous population. PLoS
                profile: Pozna´n – one of the “normals” in the cen-  One. 2012;7(6):e36573.
                tre of Europe. Cities. 2021;111:103095.           http://dx.doi.org/10.1371/journal.pone.0036573
                http://dx.doi.org/10.1016/j.cities.2020.103095  122. Rocha Filho T, Moret M, Chow C, et al. A data-
            110. Li KK, Jarvis SA, Minhas F. Elementary ef-       driven model for COVID-19 pandemic–evolution
                fects analysis of factors controlling COVID-19 in-  of the attack rate and prognosis for Brazil. Chaos
                fections in computational simulation reveals the  Solitons Fractals. 2021;152:111359.
                importance of social distancing and mask usage.   http://dx.doi.org/10.1016/j.chaos.2021.111359
                                                           767
   220   221   222   223   224   225   226   227   228   229   230