Page 224 - IJOCTA-15-4
P. 224

H. Kravitz et al. / IJOCTA, Vol.15, No.4, pp.750-778 (2025)

                Theor Biol. 1985;116(3):377-393.              86. Guilmeau T, Chouzenoux E, Elvira V. Simulated
                http://dx.doi.org/10.1016/S0022-5193(85)80276-    annealing: A review and a new scheme. In: 2021
                9                                                 IEEE Statistical Signal Processing Workshop
             73. Kuniya T, Wang J. Global dynamics of an SIR      (SSP). IEEE; 2021:101-105.
                epidemic model with nonlocal diffusion. Nonlin-   http://dx.doi.org/10.1109/SSP49050.2021.9513782
                ear Anal Real World Appl. 2018;43:262-282.    87. Kirkpatrick S, Gelatt CD Jr,    Vecchi MP.
                http://dx.doi.org/10.1016/j.nonrwa.2018.03.001    Optimization by simulated annealing. Science.
             74. Miyaoka TY, Lenhart S, Meyer JF. Optimal         1983;220(4598):671-680.
                control of vaccination in a vector-borne reac-    http://dx.doi.org/10.1126/science.220.4598.671
                tion–diffusion model applied to Zika virus. J Math  88. Gunantara N. A review of multiobjective opti-
                Biol. 2019;79(3):1077-1104.                       mization: Methods and its applications. Cogent
                http://dx.doi.org/10.1007/s00285-019-01390-z      Eng. 2018;5(1):1502242.
             75. Aguilar-Madera  CG,   Espinosa-Paredes  G,       http://dx.doi.org/10.1080/23311916.2018.1502242
                Herrera-Hern´andez E, et al. The spreading of  89. Rosenbrock H. An automatic method for finding
                COVID-19 in Mexico: A diffusional approach.       the greatest or least value of a function. Comput
                Results Phys. 2021;27:104555.                     J. 1960;3(3):175-184.
                http://dx.doi.org/10.1016/j.rinp.2021.104555      http://dx.doi.org/10.1093/comjnl/3.3.175
             76. Geng X, Katul GG, Gerges F, et al. A kernel-  90. Emiola I, Adem R. Comparison of minimization
                modulated SIR model for COVID-19 contagious       methods for Rosenbrock functions. In:  2021
                spread from county to continent. Proc Natl Acad   29th Mediterranean Conference on Control and
                Sci USA. 2021;118(21):e2023321118.                Automation (MED). IEEE; 2021:837-842.
                http://dx.doi.org/10.1073/pnas.2023321118         http://dx.doi.org/10.1109/MED51440.2021.9480200
             77. Deng K. Asymptotic behavior of an SIR reaction-  91. Fridovich-Keil S, Recht B. Choosing the step size:
                diffusion model with a linear source. Discrete    Intuitive line search algorithms with efficient con-
                Contin Dyn Syst Ser B. 2019;25(11).               vergence. In: 11th Annual Workshop on Opti-
                http://dx.doi.org/10.3934/dcdsb.2019114           mization.
             78. Kravitz H, Brio M, Caputo J-G. Localized eigen-  92. (Possibly missing in your input—starts with
                vectors on metric graphs. Math Comput Simul.      “Newton methods for function minimization,”
                2023;214:352-372.                                 Math Comput 1970;24(111):647-656).
                http://dx.doi.org/10.1016/j.matcom.2023.07.011  93. Berzi P. Convergence and stability improve-
             79. Long Z, Lu Y, Dong B. PDENet 2.0: Learning       ment of quasi-Newton methods by full-rank up-
                PDEs from data with a numeric-symbolic hybrid     date of the Jacobian approximates. Appl Math.
                deep network. J Comput Phys. 2019;399:108925.     2024;4(1):143-181.
                http://dx.doi.org/10.1016/j.jcp.2019.108925       http://dx.doi.org/10.3390/appliedmath4010008
             80. Rudy SH, Brunton SL, Proctor JL, Kutz JN.    94. Gebreslassie BH, Diwekar UM. Heterogeneous
                Data-driven discovery of partial differential equa-  multi-agent optimization framework with applica-
                tions. Sci Adv. 2017;3(4):e1602614.               tion to synthesizing optimal nuclear waste blends.
                http://dx.doi.org/10.1126/sciadv.1602614          Clean Technol Environ Policy. 2018;20(1):137-
             81. Walkowiak MP, Walkowiak D. Underestimation       157.
                in reporting excess COVID-19 death data in        http://dx.doi.org/10.1007/s10098-017-1464-4
                Poland during the first three pandemic waves. Int  95. Opawale S. Comparing and Contrasting Differen-
                J Environ Res Public Health. 2022;19(6):3692.     tial Evolution (DE) and Covariance Matrix Adap-
                http://dx.doi.org/10.3390/ijerph19063692          tation Evolution Strategies [dissertation]. Guelph,
             82. Muller CP. Do asymptomatic carriers of SARS-     ON: University of Guelph; 2018.
                CoV-2 transmit the virus?  Lancet Reg Health  96. Kaya M, Ozkan O. UAV routing with genetic
                Eur. 2021;4:100082.                               algorithm based matheuristic for border security
                http://dx.doi.org/10.1016/j.lanepe.2021.100082    missions. Int J Optim Control Theories Appl
             83. Embrett M, Sim SM, Caldwell HA, et al. Barri-    (IJOCTA). 2021;11(2):128-138.
                ers to and strategies to address COVID-19 testing  http://dx.doi.org/10.11121/ijocta.01.2021.001023
                hesitancy: A rapid scoping review. BMC Public  97. Granville V, Kriv´anek M, Rasson J-P. Simulated
                Health. 2022;22(1):750.                           annealing: A proof of convergence. IEEE Trans
                http://dx.doi.org/10.1186/s12889-022-13127-7      Pattern Anal Mach Intell. 1994;16(6):652-656.
             84. Ciacchini B, Tonioli F, Marciano C, et al. Reluc-  http://dx.doi.org/10.1109/34.295910
                tance to seek pediatric care during the COVID-19  98. Karabulut T¨urkseven E, Gen¸c E, S¸afak I. End
                pandemic and the risks of delayed diagnosis. Ital  of day process optimization through multi-mode
                J Pediatr. 2020;46:1-4.                           resource constrained project scheduling – a bank-
                http://dx.doi.org/10.1186/s13052-020-00849-w      ing case study. Int J Optim Control Theories Appl
             85. The MathWorks, Inc. MATLAB R2023b. Natick,       (IJOCTA). 2025;15(2):330-342.
                MA: The MathWorks, Inc; 2023. Available from:     http://dx.doi.org/10.36922/ijocta.1694
                https://www.mathworks.com/

                                                           766
   219   220   221   222   223   224   225   226   227   228   229