Page 224 - IJOCTA-15-4
P. 224
H. Kravitz et al. / IJOCTA, Vol.15, No.4, pp.750-778 (2025)
Theor Biol. 1985;116(3):377-393. 86. Guilmeau T, Chouzenoux E, Elvira V. Simulated
http://dx.doi.org/10.1016/S0022-5193(85)80276- annealing: A review and a new scheme. In: 2021
9 IEEE Statistical Signal Processing Workshop
73. Kuniya T, Wang J. Global dynamics of an SIR (SSP). IEEE; 2021:101-105.
epidemic model with nonlocal diffusion. Nonlin- http://dx.doi.org/10.1109/SSP49050.2021.9513782
ear Anal Real World Appl. 2018;43:262-282. 87. Kirkpatrick S, Gelatt CD Jr, Vecchi MP.
http://dx.doi.org/10.1016/j.nonrwa.2018.03.001 Optimization by simulated annealing. Science.
74. Miyaoka TY, Lenhart S, Meyer JF. Optimal 1983;220(4598):671-680.
control of vaccination in a vector-borne reac- http://dx.doi.org/10.1126/science.220.4598.671
tion–diffusion model applied to Zika virus. J Math 88. Gunantara N. A review of multiobjective opti-
Biol. 2019;79(3):1077-1104. mization: Methods and its applications. Cogent
http://dx.doi.org/10.1007/s00285-019-01390-z Eng. 2018;5(1):1502242.
75. Aguilar-Madera CG, Espinosa-Paredes G, http://dx.doi.org/10.1080/23311916.2018.1502242
Herrera-Hern´andez E, et al. The spreading of 89. Rosenbrock H. An automatic method for finding
COVID-19 in Mexico: A diffusional approach. the greatest or least value of a function. Comput
Results Phys. 2021;27:104555. J. 1960;3(3):175-184.
http://dx.doi.org/10.1016/j.rinp.2021.104555 http://dx.doi.org/10.1093/comjnl/3.3.175
76. Geng X, Katul GG, Gerges F, et al. A kernel- 90. Emiola I, Adem R. Comparison of minimization
modulated SIR model for COVID-19 contagious methods for Rosenbrock functions. In: 2021
spread from county to continent. Proc Natl Acad 29th Mediterranean Conference on Control and
Sci USA. 2021;118(21):e2023321118. Automation (MED). IEEE; 2021:837-842.
http://dx.doi.org/10.1073/pnas.2023321118 http://dx.doi.org/10.1109/MED51440.2021.9480200
77. Deng K. Asymptotic behavior of an SIR reaction- 91. Fridovich-Keil S, Recht B. Choosing the step size:
diffusion model with a linear source. Discrete Intuitive line search algorithms with efficient con-
Contin Dyn Syst Ser B. 2019;25(11). vergence. In: 11th Annual Workshop on Opti-
http://dx.doi.org/10.3934/dcdsb.2019114 mization.
78. Kravitz H, Brio M, Caputo J-G. Localized eigen- 92. (Possibly missing in your input—starts with
vectors on metric graphs. Math Comput Simul. “Newton methods for function minimization,”
2023;214:352-372. Math Comput 1970;24(111):647-656).
http://dx.doi.org/10.1016/j.matcom.2023.07.011 93. Berzi P. Convergence and stability improve-
79. Long Z, Lu Y, Dong B. PDENet 2.0: Learning ment of quasi-Newton methods by full-rank up-
PDEs from data with a numeric-symbolic hybrid date of the Jacobian approximates. Appl Math.
deep network. J Comput Phys. 2019;399:108925. 2024;4(1):143-181.
http://dx.doi.org/10.1016/j.jcp.2019.108925 http://dx.doi.org/10.3390/appliedmath4010008
80. Rudy SH, Brunton SL, Proctor JL, Kutz JN. 94. Gebreslassie BH, Diwekar UM. Heterogeneous
Data-driven discovery of partial differential equa- multi-agent optimization framework with applica-
tions. Sci Adv. 2017;3(4):e1602614. tion to synthesizing optimal nuclear waste blends.
http://dx.doi.org/10.1126/sciadv.1602614 Clean Technol Environ Policy. 2018;20(1):137-
81. Walkowiak MP, Walkowiak D. Underestimation 157.
in reporting excess COVID-19 death data in http://dx.doi.org/10.1007/s10098-017-1464-4
Poland during the first three pandemic waves. Int 95. Opawale S. Comparing and Contrasting Differen-
J Environ Res Public Health. 2022;19(6):3692. tial Evolution (DE) and Covariance Matrix Adap-
http://dx.doi.org/10.3390/ijerph19063692 tation Evolution Strategies [dissertation]. Guelph,
82. Muller CP. Do asymptomatic carriers of SARS- ON: University of Guelph; 2018.
CoV-2 transmit the virus? Lancet Reg Health 96. Kaya M, Ozkan O. UAV routing with genetic
Eur. 2021;4:100082. algorithm based matheuristic for border security
http://dx.doi.org/10.1016/j.lanepe.2021.100082 missions. Int J Optim Control Theories Appl
83. Embrett M, Sim SM, Caldwell HA, et al. Barri- (IJOCTA). 2021;11(2):128-138.
ers to and strategies to address COVID-19 testing http://dx.doi.org/10.11121/ijocta.01.2021.001023
hesitancy: A rapid scoping review. BMC Public 97. Granville V, Kriv´anek M, Rasson J-P. Simulated
Health. 2022;22(1):750. annealing: A proof of convergence. IEEE Trans
http://dx.doi.org/10.1186/s12889-022-13127-7 Pattern Anal Mach Intell. 1994;16(6):652-656.
84. Ciacchini B, Tonioli F, Marciano C, et al. Reluc- http://dx.doi.org/10.1109/34.295910
tance to seek pediatric care during the COVID-19 98. Karabulut T¨urkseven E, Gen¸c E, S¸afak I. End
pandemic and the risks of delayed diagnosis. Ital of day process optimization through multi-mode
J Pediatr. 2020;46:1-4. resource constrained project scheduling – a bank-
http://dx.doi.org/10.1186/s13052-020-00849-w ing case study. Int J Optim Control Theories Appl
85. The MathWorks, Inc. MATLAB R2023b. Natick, (IJOCTA). 2025;15(2):330-342.
MA: The MathWorks, Inc; 2023. Available from: http://dx.doi.org/10.36922/ijocta.1694
https://www.mathworks.com/
766

