Page 223 - IJOCTA-15-4
P. 223

Data-driven optimization and parameter estimation for an epidemic model

                and temporal correlation with symptom onset:      http://dx.doi.org/10.1140/epjp/s13360-021-
                A prospective, longitudinal, community cohort     02237-7
                study. Lancet Respir Med. 2022;10(11):1061-1073.  60. Medvedeva M, Simos TE, Tsitouras C, Kat-
                http://dx.doi.org/10.1016/S2213-2600(22)00226-    sikis V. Direct estimation of SIR model parame-
                0                                                 ters through second-order finite differences. Math
             49. Czerwi´nski M, Stepie´n M, Juszczyk G, et al.    Methods Appl Sci. 2021;44(5):3819-3826.
                Reversed urban–rural gradient in COVID-19         http://dx.doi.org/10.1002/mma.6985
                seroprevalence and related factors in a nationally  61. Cant´o B, Coll C, S´anchez E. Estimation of pa-
                representative survey, Poland, 29 March to 14     rameters in a structured SIR model. Adv Differ
                May 2021. Euro Surveill. 2023;28(35):2200745.     Equ. 2017;2017(1):33.
                http://dx.doi.org/10.2807/1560-                   http://dx.doi.org/10.1186/s13662-017-1078-5
                7917.ES.2023.28.35.2200745                    62. Magal P, Webb G. The parameter identification
             50. Prodanov D. Analytical parameter estimation of   problem for SIR epidemic models: Identifying
                the SIR epidemic model: Applications to the       unreported cases. J Math Biol. 2018;77(6):1629-
                COVID-19 pandemic. Entropy. 2020;23(1):59.        1648.
                http://dx.doi.org/10.3390/e23010059               http://dx.doi.org/10.1007/s00285-017-1203-9
             51. Prodanov D. Analytical solutions and parame-  63. Amiri Mehra AH, Shafieirad M, Abbasi Z,
                ter estimation of the SIR epidemic model. In:     Zamani I. Parameter estimation and predic-
                Mathematical Analysis of Infectious Diseases.     tion of COVID-19 epidemic turning point and
                2022:163-189.                                     ending time of a case study on SIR/SQAIR
                http://dx.doi.org/10.1016/B978-0-32-390504-       epidemic models. Comput Math Methods Med.
                6.00015-2                                         2020;2020(1):1465923.
             52. Cl´emen¸con S, Chi Tran V, De Arazoza H. A sto-  http://dx.doi.org/10.1155/2020/1465923
                chastic SIR model with contact-tracing: Large  64. Ministerstwo Zdrowia (Ministry of Health).
                population limits and statistical inference. J Biol  Wykaz zaka˙ze´n koronawirusem SARS-CoV-2. Ac-
                Dyn. 2008;2(4):392-414.                           cessed December 10, 2024.
                http://dx.doi.org/10.1080/17513750801993266       https://www.gov.pl/web/koronawirus/wykaz
             53. Raissi M, Ramezani N, Seshaiyer P. On param-     -zarazen-koronawirusem-sars-cov-2
                eter estimation approaches for predicting disease  65. Krzysztofik R, Kantor-Pietraga I, Sp´orna T.
                transmission through optimization, deep learning  Spatial and functional dimensions of the COVID-
                and statistical inference methods. Lett Biomathe-  19 epidemic in Poland. Eurasian Geogr Econ.
                matics. 2019;6(2):1-26.                           2020;61(4-5):573-586.
                http://dx.doi.org/10.30707/LiB6.2Raissi           http://dx.doi.org/10.1080/15387216.2020.1783337
             54. Han S, Stelz L, Stoecker H, Wang L, Zhou     66. Werner PA, Kesik-Brodacka M, Nowak K, et
                K. Approaching epidemiological dynamics of        al. Modeling the spatial and temporal spread of
                COVID-19 with physics-informed neural net-        COVID-19 in Poland based on a spatial interac-
                works. J Franklin Inst. 2024;361(6):106671.       tion model. ISPRS Int J Geo Inf. 2022;11(3):195.
                http://dx.doi.org/10.1016/j.jfranklin.2024.106671  http://dx.doi.org/10.3390/ijgi11030195
             55. Vega R, Flores L, Greiner R. SIMLR: Machine  67. Berkolaiko G, Kuchment P. Introduction to Quan-
                learning inside the SIR. Forecasting. 2022;4(1):72-  tum Graphs. Providence, RI: American Math-
                94.                                               ematical Society; 2013. (Mathematical Surveys
                http://dx.doi.org/10.3390/forecast4010005         and Monographs 186).
             56. Zhuang L, Cressie N, Pomeroy L, Janies D. Multi-  68. Kurasov P. Spectral Geometry of Graphs. Cham:
                species SIR models from a dynamical Bayesian      Birkh¨auser; 2024. (Operator Theory: Advances
                perspective. Theor Ecol. 2013;6(4):457-473.       and Applications, Vol 293).
                http://dx.doi.org/10.1007/s12080-013-0180-x       http://dx.doi.org/10.1007/978-3-662-67872-5
             57. El Maroufy H, Kernane T, Becheket S, Ouddadj  69. Acioli PH. Diffusion as a first model of spread of
                A. Bayesian inference for nonlinear stochastic    viral infection. Am J Phys. 2020;88(8):600-604.
                SIR epidemic model. J Stat Comput Simul.          http://dx.doi.org/10.1119/10.0001464
                2016;86(11):2229-2240.                        70. Alqarni M, Nasir A, Alyami MA, et al. A SEIR
                http://dx.doi.org/10.1080/00949655.2015.1107561   epidemic model of whooping cough-like infections
             58. Susyanto N, Arcede JP. Unveiling SIR model pa-   and its dynamically consistent approximation.
                rameters: Empirical parameter approach for ex-    Complexity. 2022;2022(1):3642444.
                plicit estimation and confidence interval construc-  http://dx.doi.org/10.1155/2022/3642444
                tion. Jambura J Biomathematics. 2024;5(1):54-  71. K¨all´en A. Thresholds and travelling waves in
                62.                                               an epidemic model for rabies. Nonlinear Anal
                http://dx.doi.org/10.37905/jjbm.v5i1.26287        Theory Methods Appl. 1984;8(8):851-856.
             59. Schmitt FG. An algorithm for the direct esti-    http://dx.doi.org/10.1016/0362-546X(84)90107-
                mation of the parameters of the SIR epidemic      X
                model from the I(t) dynamics. Eur Phys J Plus.  72. K¨all´en A, Arcuri P, Murray J. A simple model
                2022;137(1):57.                                   for the spatial spread and control of rabies. J
                                                           765
   218   219   220   221   222   223   224   225   226   227   228