Page 223 - IJOCTA-15-4
P. 223
Data-driven optimization and parameter estimation for an epidemic model
and temporal correlation with symptom onset: http://dx.doi.org/10.1140/epjp/s13360-021-
A prospective, longitudinal, community cohort 02237-7
study. Lancet Respir Med. 2022;10(11):1061-1073. 60. Medvedeva M, Simos TE, Tsitouras C, Kat-
http://dx.doi.org/10.1016/S2213-2600(22)00226- sikis V. Direct estimation of SIR model parame-
0 ters through second-order finite differences. Math
49. Czerwi´nski M, Stepie´n M, Juszczyk G, et al. Methods Appl Sci. 2021;44(5):3819-3826.
Reversed urban–rural gradient in COVID-19 http://dx.doi.org/10.1002/mma.6985
seroprevalence and related factors in a nationally 61. Cant´o B, Coll C, S´anchez E. Estimation of pa-
representative survey, Poland, 29 March to 14 rameters in a structured SIR model. Adv Differ
May 2021. Euro Surveill. 2023;28(35):2200745. Equ. 2017;2017(1):33.
http://dx.doi.org/10.2807/1560- http://dx.doi.org/10.1186/s13662-017-1078-5
7917.ES.2023.28.35.2200745 62. Magal P, Webb G. The parameter identification
50. Prodanov D. Analytical parameter estimation of problem for SIR epidemic models: Identifying
the SIR epidemic model: Applications to the unreported cases. J Math Biol. 2018;77(6):1629-
COVID-19 pandemic. Entropy. 2020;23(1):59. 1648.
http://dx.doi.org/10.3390/e23010059 http://dx.doi.org/10.1007/s00285-017-1203-9
51. Prodanov D. Analytical solutions and parame- 63. Amiri Mehra AH, Shafieirad M, Abbasi Z,
ter estimation of the SIR epidemic model. In: Zamani I. Parameter estimation and predic-
Mathematical Analysis of Infectious Diseases. tion of COVID-19 epidemic turning point and
2022:163-189. ending time of a case study on SIR/SQAIR
http://dx.doi.org/10.1016/B978-0-32-390504- epidemic models. Comput Math Methods Med.
6.00015-2 2020;2020(1):1465923.
52. Cl´emen¸con S, Chi Tran V, De Arazoza H. A sto- http://dx.doi.org/10.1155/2020/1465923
chastic SIR model with contact-tracing: Large 64. Ministerstwo Zdrowia (Ministry of Health).
population limits and statistical inference. J Biol Wykaz zaka˙ze´n koronawirusem SARS-CoV-2. Ac-
Dyn. 2008;2(4):392-414. cessed December 10, 2024.
http://dx.doi.org/10.1080/17513750801993266 https://www.gov.pl/web/koronawirus/wykaz
53. Raissi M, Ramezani N, Seshaiyer P. On param- -zarazen-koronawirusem-sars-cov-2
eter estimation approaches for predicting disease 65. Krzysztofik R, Kantor-Pietraga I, Sp´orna T.
transmission through optimization, deep learning Spatial and functional dimensions of the COVID-
and statistical inference methods. Lett Biomathe- 19 epidemic in Poland. Eurasian Geogr Econ.
matics. 2019;6(2):1-26. 2020;61(4-5):573-586.
http://dx.doi.org/10.30707/LiB6.2Raissi http://dx.doi.org/10.1080/15387216.2020.1783337
54. Han S, Stelz L, Stoecker H, Wang L, Zhou 66. Werner PA, Kesik-Brodacka M, Nowak K, et
K. Approaching epidemiological dynamics of al. Modeling the spatial and temporal spread of
COVID-19 with physics-informed neural net- COVID-19 in Poland based on a spatial interac-
works. J Franklin Inst. 2024;361(6):106671. tion model. ISPRS Int J Geo Inf. 2022;11(3):195.
http://dx.doi.org/10.1016/j.jfranklin.2024.106671 http://dx.doi.org/10.3390/ijgi11030195
55. Vega R, Flores L, Greiner R. SIMLR: Machine 67. Berkolaiko G, Kuchment P. Introduction to Quan-
learning inside the SIR. Forecasting. 2022;4(1):72- tum Graphs. Providence, RI: American Math-
94. ematical Society; 2013. (Mathematical Surveys
http://dx.doi.org/10.3390/forecast4010005 and Monographs 186).
56. Zhuang L, Cressie N, Pomeroy L, Janies D. Multi- 68. Kurasov P. Spectral Geometry of Graphs. Cham:
species SIR models from a dynamical Bayesian Birkh¨auser; 2024. (Operator Theory: Advances
perspective. Theor Ecol. 2013;6(4):457-473. and Applications, Vol 293).
http://dx.doi.org/10.1007/s12080-013-0180-x http://dx.doi.org/10.1007/978-3-662-67872-5
57. El Maroufy H, Kernane T, Becheket S, Ouddadj 69. Acioli PH. Diffusion as a first model of spread of
A. Bayesian inference for nonlinear stochastic viral infection. Am J Phys. 2020;88(8):600-604.
SIR epidemic model. J Stat Comput Simul. http://dx.doi.org/10.1119/10.0001464
2016;86(11):2229-2240. 70. Alqarni M, Nasir A, Alyami MA, et al. A SEIR
http://dx.doi.org/10.1080/00949655.2015.1107561 epidemic model of whooping cough-like infections
58. Susyanto N, Arcede JP. Unveiling SIR model pa- and its dynamically consistent approximation.
rameters: Empirical parameter approach for ex- Complexity. 2022;2022(1):3642444.
plicit estimation and confidence interval construc- http://dx.doi.org/10.1155/2022/3642444
tion. Jambura J Biomathematics. 2024;5(1):54- 71. K¨all´en A. Thresholds and travelling waves in
62. an epidemic model for rabies. Nonlinear Anal
http://dx.doi.org/10.37905/jjbm.v5i1.26287 Theory Methods Appl. 1984;8(8):851-856.
59. Schmitt FG. An algorithm for the direct esti- http://dx.doi.org/10.1016/0362-546X(84)90107-
mation of the parameters of the SIR epidemic X
model from the I(t) dynamics. Eur Phys J Plus. 72. K¨all´en A, Arcuri P, Murray J. A simple model
2022;137(1):57. for the spatial spread and control of rabies. J
765

