Page 222 - IJOCTA-15-4
P. 222
H. Kravitz et al. / IJOCTA, Vol.15, No.4, pp.750-778 (2025)
https://ddd.uab.cat/pub/matmat/matmat_a2 37. Lang JC, De Sterck H, Kaiser JL, Miller JC. An-
013/matmat_a2013a3.pdf alytic models for SIR disease spread on random
25. Cooper I, Mondal A, Antonopoulos CG. A SIR spatial networks. J Complex Netw. 2018;6(6):948-
model assumption for the spread of COVID-19 970.
in different communities. Chaos Solitons Fractals. http://dx.doi.org/10.1093/comnet/cny004
2020;139:110057. 38. B¨arwolff G. A local and time resolution of the
http://dx.doi.org/10.1016/j.chaos.2020.110057 COVID-19 propagation–a two-dimensional ap-
26. Saber S, Solouma E, Althubyani M, Messaoudi M. proach for Germany including diffusion phenom-
Statistical insights into zoonotic disease dynam- ena to describe the spatial spread of the COVID-
ics: simulation and control strategy evaluation. 19 pandemic. Physics. 2021;3(3):536-548.
Symmetry. 2025;17(5):733. http://dx.doi.org/10.3390/physics3030033
http://dx.doi.org/10.3390/sym17050733 39. Wang L, Zhang Y, Wang Z, Li X. The impact
27. Alazman I, Mishra MN, Alkahtani BS, Dubey RS. of human location-specific contact pattern on the
Analysis of infection and diffusion coefficient in an SIR epidemic transmission between populations.
SIR model by using generalized fractional deriva- Int J Bifurcation Chaos. 2013;23(5):1350095.
tive. Fractal Fract. 2024;8(9):537. http://dx.doi.org/10.1142/S0218127413500958
http://dx.doi.org/10.3390/fractalfract8090537 40. Regis S, Nuiro SP, Merat W, Doncescu A. A data-
28. Althubyani M, Adam HD, Alalyani A, et al. based approach using a multi-group SIR model
Understanding zoonotic disease spread with with fuzzy subsets: Application to the COVID-19
a fractional order epidemic model. Sci Rep. simulation in the islands of Guadeloupe. Biology.
2025;15(1):13921. 2021;10(10):991.
http://dx.doi.org/10.1038/s41598-025-95943-6 http://dx.doi.org/10.3390/biology10100991
29. Berestycki H, Roquejoffre JM, Rossi L. Propaga- 41. Shushtari ZJ, Salimi Y, Ahmadi S, et al. Social
tion of epidemics along lines with fast diffusion. determinants of adherence to COVID-19 preven-
Bull Math Biol. 2021;83(1):1-34. tive guidelines: A comprehensive review. Osong
http://dx.doi.org/10.1007/s11538-020-00826-8 Public Health Res Perspect. 2021;12(6):346.
30. Kravitz H, Dur´on C, Brio M. A coupled spatial- http://dx.doi.org/10.24171/j.phrp.2021.0180
network model: a mathematical framework for 42. Khanijahani A, Iezadi S, Gholipour K, Azami-
applications in epidemiology. Bull Math Biol. Aghdash S, Naghibi D. A systematic review
2024;86(11):132. of racial/ethnic and socioeconomic disparities in
http://dx.doi.org/10.1007/s11538-024-01364-3 COVID-19. Int J Equity Health. 2021;20:248.
31. Besse C, Faye G. Dynamics of epidemic spreading http://dx.doi.org/10.1186/s12939-021-01582-4
on connected graphs. J Math Biol. 2021;82(6):1- 43. Gorges RJ, Konetzka RT. Factors associated
52. with racial differences in deaths among nursing
http://dx.doi.org/10.1007/s00285-021-01602-5 home residents with COVID-19 infection in the
32. Fitzgibbon WE, Morgan JJ, Webb GF, Wu Y. US. JAMA Netw Open. 2021;4(2):e2037431.
Modelling the aqueous transport of an infectious http://dx.doi.org/10.1001/jamanetworkopen.2020.37431
pathogen in regional communities: application to 44. Bonnasse-Gahot L, Berestycki H, Depuiset MA,
the cholera outbreak in Haiti. J R Soc Interface. et al. Epidemiological modelling of the 2005
2020;17(169):20200429. French riots: A spreading wave and the role of
http://dx.doi.org/10.1098/rsif.2020.0429 contagion. Sci Rep. 2018;8(1):107.
33. Wang X, Gao D, Wang J. Influence of hu- http://dx.doi.org/10.1038/s41598-017-18093-4
man behavior on cholera dynamics. Math Biosci. 45. Capaldi A, Behrend S, Berman B, Smith J,
2015;267:41-52. Wright J, Lloyd AL. Parameter estimation and
http://dx.doi.org/10.1016/j.mbs.2015.06.009 uncertainty quantification for an epidemic model.
34. Wang H, Yamamoto N. Using a partial differen- Math Biosci Eng. 2012;9(3):553-576.
tial equation with Google Mobility data to pre- http://dx.doi.org/10.3934/mbe.2012.9.553
dict COVID-19 in Arizona. Math Biosci Eng. 46. Barber RM, Sorensen RJ, Pigott DM, et al.
2020;17(5):4891-4904. Estimating global, regional, and national daily
http://dx.doi.org/10.3934/mbe.2020266 and cumulative infections with SARS-CoV-2
35. Aristov VV, Stroganov AV, Yastrebov AD. Sim- through Nov 14, 2021: a statistical analysis.
ulation of spatial spread of the COVID-19 pan- Lancet. 2022;399(10344):2351-2380.
demic on the basis of the kinetic-advection model. http://dx.doi.org/10.1016/S0140-6736(22)00484-
Physics. 2021;3(1):85-102. 6
http://dx.doi.org/10.3390/physics3010008 47. Rahmandad H, Lim TY, Sterman J. Estimating
´
36. Odor G, Czifra D, Komj´athy J, Lov´asz L, Karsai COVID-19 underreporting across 86 nations: Im-
M. Switchover phenomenon induced by epidemic plications for projections and control. medRxiv.
seeding on geometric networks. Proc Natl Acad Preprint. Published online 2020.
Sci USA. 2021;118(41):e2112607118. http://dx.doi.org/10.1101/2020.06.24.20139451
http://dx.doi.org/10.1073/pnas.2112607118 48. Hakki S, Zhou J, Jonnerby J, et al. Onset
and window of SARS-CoV-2 infectiousness
764

