Page 222 - IJOCTA-15-4
P. 222

H. Kravitz et al. / IJOCTA, Vol.15, No.4, pp.750-778 (2025)

                https://ddd.uab.cat/pub/matmat/matmat_a2      37. Lang JC, De Sterck H, Kaiser JL, Miller JC. An-
                013/matmat_a2013a3.pdf                            alytic models for SIR disease spread on random
             25. Cooper I, Mondal A, Antonopoulos CG. A SIR       spatial networks. J Complex Netw. 2018;6(6):948-
                model assumption for the spread of COVID-19       970.
                in different communities. Chaos Solitons Fractals.  http://dx.doi.org/10.1093/comnet/cny004
                2020;139:110057.                              38. B¨arwolff G. A local and time resolution of the
                http://dx.doi.org/10.1016/j.chaos.2020.110057     COVID-19 propagation–a two-dimensional ap-
             26. Saber S, Solouma E, Althubyani M, Messaoudi M.   proach for Germany including diffusion phenom-
                Statistical insights into zoonotic disease dynam-  ena to describe the spatial spread of the COVID-
                ics: simulation and control strategy evaluation.  19 pandemic. Physics. 2021;3(3):536-548.
                Symmetry. 2025;17(5):733.                         http://dx.doi.org/10.3390/physics3030033
                http://dx.doi.org/10.3390/sym17050733         39. Wang L, Zhang Y, Wang Z, Li X. The impact
             27. Alazman I, Mishra MN, Alkahtani BS, Dubey RS.    of human location-specific contact pattern on the
                Analysis of infection and diffusion coefficient in an  SIR epidemic transmission between populations.
                SIR model by using generalized fractional deriva-  Int J Bifurcation Chaos. 2013;23(5):1350095.
                tive. Fractal Fract. 2024;8(9):537.               http://dx.doi.org/10.1142/S0218127413500958
                http://dx.doi.org/10.3390/fractalfract8090537  40. Regis S, Nuiro SP, Merat W, Doncescu A. A data-
             28. Althubyani M, Adam HD, Alalyani A, et al.        based approach using a multi-group SIR model
                Understanding zoonotic disease spread with        with fuzzy subsets: Application to the COVID-19
                a fractional order epidemic model. Sci Rep.       simulation in the islands of Guadeloupe. Biology.
                2025;15(1):13921.                                 2021;10(10):991.
                http://dx.doi.org/10.1038/s41598-025-95943-6      http://dx.doi.org/10.3390/biology10100991
             29. Berestycki H, Roquejoffre JM, Rossi L. Propaga-  41. Shushtari ZJ, Salimi Y, Ahmadi S, et al. Social
                tion of epidemics along lines with fast diffusion.  determinants of adherence to COVID-19 preven-
                Bull Math Biol. 2021;83(1):1-34.                  tive guidelines: A comprehensive review. Osong
                http://dx.doi.org/10.1007/s11538-020-00826-8      Public Health Res Perspect. 2021;12(6):346.
             30. Kravitz H, Dur´on C, Brio M. A coupled spatial-  http://dx.doi.org/10.24171/j.phrp.2021.0180
                network model: a mathematical framework for   42. Khanijahani A, Iezadi S, Gholipour K, Azami-
                applications in epidemiology. Bull Math Biol.     Aghdash S, Naghibi D. A systematic review
                2024;86(11):132.                                  of racial/ethnic and socioeconomic disparities in
                http://dx.doi.org/10.1007/s11538-024-01364-3      COVID-19. Int J Equity Health. 2021;20:248.
             31. Besse C, Faye G. Dynamics of epidemic spreading  http://dx.doi.org/10.1186/s12939-021-01582-4
                on connected graphs. J Math Biol. 2021;82(6):1-  43. Gorges RJ, Konetzka RT. Factors associated
                52.                                               with racial differences in deaths among nursing
                http://dx.doi.org/10.1007/s00285-021-01602-5      home residents with COVID-19 infection in the
             32. Fitzgibbon WE, Morgan JJ, Webb GF, Wu Y.         US. JAMA Netw Open. 2021;4(2):e2037431.
                Modelling the aqueous transport of an infectious  http://dx.doi.org/10.1001/jamanetworkopen.2020.37431
                pathogen in regional communities: application to  44. Bonnasse-Gahot L, Berestycki H, Depuiset MA,
                the cholera outbreak in Haiti. J R Soc Interface.  et al. Epidemiological modelling of the 2005
                2020;17(169):20200429.                            French riots: A spreading wave and the role of
                http://dx.doi.org/10.1098/rsif.2020.0429          contagion. Sci Rep. 2018;8(1):107.
             33. Wang X, Gao D, Wang J. Influence of hu-          http://dx.doi.org/10.1038/s41598-017-18093-4
                man behavior on cholera dynamics. Math Biosci.  45. Capaldi A, Behrend S, Berman B, Smith J,
                2015;267:41-52.                                   Wright J, Lloyd AL. Parameter estimation and
                http://dx.doi.org/10.1016/j.mbs.2015.06.009       uncertainty quantification for an epidemic model.
             34. Wang H, Yamamoto N. Using a partial differen-    Math Biosci Eng. 2012;9(3):553-576.
                tial equation with Google Mobility data to pre-   http://dx.doi.org/10.3934/mbe.2012.9.553
                dict COVID-19 in Arizona. Math Biosci Eng.    46. Barber RM, Sorensen RJ, Pigott DM, et al.
                2020;17(5):4891-4904.                             Estimating global, regional, and national daily
                http://dx.doi.org/10.3934/mbe.2020266             and cumulative infections with SARS-CoV-2
             35. Aristov VV, Stroganov AV, Yastrebov AD. Sim-     through Nov 14, 2021:  a statistical analysis.
                ulation of spatial spread of the COVID-19 pan-    Lancet. 2022;399(10344):2351-2380.
                demic on the basis of the kinetic-advection model.  http://dx.doi.org/10.1016/S0140-6736(22)00484-
                Physics. 2021;3(1):85-102.                        6
                http://dx.doi.org/10.3390/physics3010008      47. Rahmandad H, Lim TY, Sterman J. Estimating
                 ´
             36. Odor G, Czifra D, Komj´athy J, Lov´asz L, Karsai  COVID-19 underreporting across 86 nations: Im-
                M. Switchover phenomenon induced by epidemic      plications for projections and control. medRxiv.
                seeding on geometric networks. Proc Natl Acad     Preprint. Published online 2020.
                Sci USA. 2021;118(41):e2112607118.                http://dx.doi.org/10.1101/2020.06.24.20139451
                http://dx.doi.org/10.1073/pnas.2112607118     48. Hakki S, Zhou J, Jonnerby J, et al. Onset
                                                                  and  window   of  SARS-CoV-2   infectiousness
                                                           764
   217   218   219   220   221   222   223   224   225   226   227