Page 88 - ITPS-7-1
P. 88

INNOSC Theranostics and
            Pharmacological Sciences                                                PfHSP and polyamines interactions



            Author contributions                                  https://doi.org/10.1016/j.molbiopara.2008.03.008

            Conceptualization: Xolani H. Makhoba               9.   Pavithra SR, Kumar R, Tatu U, 2007, Systems analysis of
            Investigation: Godlo Sesethu                          chaperone  networks  in  the  malarial  parasite  Plasmodium
                                                                  falciparum. PLoS Comput Biol, 3: 1701–1715.
            Methodology:  Maxam Nombalentle, Mthembu Yamkela,
               Mpumza Anelisa                                     https://doi.org/10.1371/journal.pcbi.0030168
            Writing – original draft:  Stanley Makumire, Krishna   10.  Jee H, 2016, Size dependent classification of heat shock
               K. Govender, Xolani H. Makhoba                     proteins: A mini-review. J Exerc Rehabil, 12: 255–259.
            Writing – review and editing: Noxolo Mkwetshana       https://doi.org/10.12965/jer.1632642.321

            Ethics approval and consent to participate         11.  Miller DJ, Fort PE, 2018, Heat shock proteins regulatory role
                                                                  in neurodevelopment. Front Neurosci, 12: 821.
            Not applicable.
                                                                  https://doi.org/10.3389/fnins.2018.00821
            Consent for publication                            12.  Ganea E, 2001, Chaperone-like activity of alpha-crystallin

            Not applicable.                                       and other small heat shock proteins. Curr Protein Pept Sci,
                                                                  2: 205–225.
            Availability of data                                  https://doi.org/10.2174/1389203013381107
            Not applicable.                                    13.  Wynn RM, Davie JR, Cox RP,  et al., 1994, Molecular
                                                                  chaperones:  Heat-shock  proteins,  foldases,  and
            References                                            matchmakers. J Lab Clin Med, 124: 31–36.

            1.   WHO, 2020, World Malaria Report 2020:  20 Years of   14.  Hall TA, 1999, BioEdit: A user-friendly biological sequence
               Global Progress and Challenges. Geneva: World Health   alignment editor and analysis program for Windows 95/98/
               Organization, p299.                                NT. Nucleic Acids Symp Ser, 41: 95–98.
            2.   Varo R, Chaccour C, Bassat Q, 2020, Update on malaria.   15.  Kelley LA, Mezulis S, Yates CM, et al., 2015, The Phyre2 web
               Med Clín (Barc), 155: 395–402.                     portal for protein modeling, prediction and analysis.  Nat
                                                                  Protoc, 10: 845–858.
               https://doi.org/10.1016/j.medcli.2020.05.010
                                                                  https://doi.org/10.1038/nprot.2015.053
            3.   Tse EG, Korsik M, Todd MH, 2019, The past, present and
               future of anti-malarial medicines. Malar J, 18: 93.   16.  Laskowski RA, Jabłońska J, Pravda L, et al., 2018, PDBsum:
                                                                  Structural  summaries  of  PDB  entries.  Protein Sci,
               https://doi.org/10.1186/s12936-019-2724-z          27: 129–134.
            4.   Antony HA, Parija SC, 2016, Antimalarial drug resistance:      https://doi.org/10.1002/pro.3289
               An overview. Trop Parasitol, 6: 30–41.
                                                               17.  Maestro S, 2020, Schrödinger Release 2020-3: Maestro. New
               https://doi.org/10.4103/2229-5070.175081           York, USA: Schrödinger, LLC.
            5.   Mbengue  A,  Bhattacharjee  S, Pandharkar  T,  et al., 2015,   18.  Halgren T, 2007, New method for fast and accurate binding-
               A molecular mechanism of artemisinin resistance in   site identification and analysis.  Chem Biol Drug Des,
               Plasmodium falciparum malaria. Nature, 520: 683–687.   69: 146–148.
               https://doi.org/10.1038/nature14412                https://doi.org/10.1111/j.1747-0285.2007.00483.x
            6.   Belete TM, 2020, Recent progress in the development of new   19.  Halgren TA, 2009, Identifying and characterizing binding
               antimalarial drugs with novel targets. Drug Des Devel Ther,   sites and assessing druggability.  J  Chem Inf Model,
               14: 3875–3889.                                     49: 377–389.
               https://doi.org/10.2147/DDDT.S265602               https://doi.org/10.1021/ci800324m
            7.   Hart RJ, Ghaffar A, Abdalal S, et al., 2016,  Plasmodium   20.  Berthold MR, Cebron N, Dill F,  et al., 2009, KNIME-the
               AdoMetDC/ODC bifunctional enzyme is essential for male   Konstanz information miner: Version 2.0 and beyond. AcM
               sexual stage development and mosquito transmission. Biol   SIGKDD Explor Newslett, 11: 26–31.
               Open, 5: 1022–1029.                                https://doi.org/10.1145/1656274.1656280
               https://doi.org/10.1242/bio.016352              21.  LigPrep S, 2019, Schrödinger Release 2019-4. New York,
            8.   Müller IB, Gupta RD, Lüersen K,  et al., 2008, Assessing   USA: Schrödinger LLC.
               the polyamine metabolism of  Plasmodium falciparum as   22.  Wass MN, Kelley LA, Sternberg MJ, 2010, 3DLigandSite:
               chemotherapeutic target. Mol Biochem Parasitol, 160: 1–7.   Predicting ligand-binding sites using similar structures.


            Volume 7 Issue 1 (2024)                         10                        https://doi.org/10.36922/itps.1228
   83   84   85   86   87   88   89   90   91   92   93