Page 15 - ITPS-8-1
P. 15

INNOSC Theranostics and
            Pharmacological Sciences                                           Image-assisted personalized interventions



            19.  Sato Y, Takeuchi T, Fuju A, et al. MRI safety for leave-on   29.  Wu D, Li G, Patel N, et al. Remotely Actuated Needle Driving
               powdered  hair  thickeners  under  1.5-T  and  3.0-T  MRI:   Device for MRI-Guided Percutaneous Interventions:
               Measurement of deflection force, MRI artifact, and   Force and Accuracy Evaluation. In:  Proceedings of the
               evaluation of preexamination screening. Phys Eng Sci Med.   2019  41   Annual  International  Conference  of  the  IEEE
                                                                         st
               2023;46:915-924.                                   Engineering in Medicine & Biology Society (EMBC), Berlin,
                                                                  Germany; 2019.
               doi: 10.1007/s13246-023-01267-y
                                                                  doi: 10.1109/ismr.2019.8710176
            20.  Akdogan G, Istanbullu O. Analysing the effects of metallic
               biomaterial design and imaging sequences on MRI   30.  Mohith S, Upadhya AR, Navin KP,  et al. Recent trends
               interpretation challenges due to image artefacts. Phys Eng   in piezoelectric actuators for precision motion and their
               Sci Med. 2022;45:1163-1174.                        applications: A review. Smart Mater Struct. 2020;30:013002.

               doi: 10.1007/s13246-022-01183-7                    doi: 10.1088/1361-665X/abc6b9
            21.  Germann C, Nanz D, Sutter R. Magnetic resonance imaging   31.  Gao X, Yang J, Wu J, et al. Piezoelectric actuators and motors:
               around metal at 1.5 Tesla: Techniques from basic to advanced   Materials, designs, and applications. Adv Mater Technol.
               and clinical impact. Investig Radiol. 2021;56:734-748.  2020;5:1900716.
               doi: 10.1097/RLI.0000000000000798                  doi: 10.1002/admt.201900716
            22.  Germann C, Falkowski AL, von Deuster C,  et al. Basic   32.  Qiao G, Li H, Lu X, Wen J, Cheng T. Piezoelectric stick-slip
               and advanced metal-artifact reduction techniques at ultra-  actuators with flexure hinge mechanisms: A review. J Intell
               high  field  7-T  magnetic  resonance  imaging-phantom   Mater Syst Struct. 2022;33:1879-1901.
               study investigating feasibility and efficacy.  Investig Radiol.      doi: 10.1177/1045389X211072244
               2022;57:387-398.
                                                               33.  Liu J, Gao X, Jin H, et al. Miniaturized electromechanical
               doi: 10.1097/RLI.0000000000000850                  devices with multi-vibration modes achieved by orderly
            23.  Inaoka T, Kitamura N, Sugeta M,  et al. Diagnostic value   stacked structure with piezoelectric strain units.  Nat
               of advanced metal artifact reduction magnetic resonance   Commun. 2022;13:6567.
               imaging for periprosthetic joint infection. J Comput Assist      doi: 10.1038/s41467-022-34231-7
               Tomogr. 2022;46:455-463.
                                                               34.  Fu DK, Fan PQ, Yuan T, Wang YS. A novel hybrid mode
               doi: 10.1097/RCT.0000000000001297                  linear ultrasonic motor with double driving feet.  Rev Sci
            24.  Haskell MW, Nielsen JF, Noll DC. Off-resonance artifact   Instrum. 2022;93:025003.
               correction for MRI: A review. NMR Biomed. 2023;36:e4867.     doi: 10.1063/5.0057254
               doi: 10.1002/nbm.4867                           35.  Li Z, Guo Z, Han H, Su Z, Sun H. Design and characteristic
            25.  Spronk T, Kraff O, Kreutner J,  et  al. Development and   analysis of multi-degree-of-freedom ultrasonic motor based
               evaluation of a numerical simulation approach to predict   on spherical stator. Rev Sci Instrum. 2022;93:025004.
               metal artifacts from passive implants in MRI.  MAGMA.      doi: 10.1063/5.0074049
               2022;35:485-497.
                                                               36.  Wang S, Zhou S, Zhang X, et al. Bionic stepping motors driven
               doi: 10.1007/s10334-021-00966-5                    by piezoelectric materials. J Bionic Eng. 2023;20:858-872.
            26.  Jia X, Zhang Y, Du H, Yu Y. Experimental study of double      doi: 10.1007/s42235-022-00313-x
               cable-conduit driving  device  for  MRI compatible biopsy
               robots. J Mech Med Biol. 2021;21:2140014.       37.  Hernandez C, Bernard Y, Razek A. Design and manufacturing
                                                                  of a piezoelectric traveling-wave pumping device.  IEEE
               doi: 10.1142/S0219519421400145                     Trans Ultrason Ferroelectr Freq Control. 2013;60:1949-1956.
            27.  Li X, Young AS, Raman SS,  et al. Automatic needle      doi: 10.1109/TUFFC.2013.2779
               tracking using Mask R-CNN for MRI-guided percutaneous
               interventions.  Int J Comput Assist Radiol Surg.   38.  Zhang SJ, Liu Y, Deng J,  et al. Piezo robotic hand for
               2020;15:1673-1684.                                 motion manipulation from micro to macro. Nat Commun.
                                                                  2023;14:500.
               doi: 10.1007/s11548-020-02226-8
                                                                  doi: 10.1038/s41467-023-36243-3
            28.  Wartenberg M, Schornak J, Carvalho P,  et al. Closed-
               loop Autonomous Needle Steering during Cooperatively   39.  Yang Z, Li X, Tang J, et al. A bionic stick-slip piezo-driven
               Controlled Needle Insertions for MRI-guided Pelvic   positioning platform designed by imitating  the structure
               Interventions. In: The 10  Hamlyn Symposium on Medical   and movement of the crab. J Bionic Eng. 2023;20:2590-2600.
                                  th
               Robotics, 33--34, Imperial College. London, UK; 2017.     doi: 10.1007/s42235-023-00411-4

            Volume 8 Issue 1 (2025)                         9                                doi: 10.36922/itps.4567
   10   11   12   13   14   15   16   17   18   19   20