Page 17 - MSAM-1-2
P. 17
Materials Science in Additive Manufacturing Flexural behavior of bio-inspired sutures
Genet, 319: 86–98. https://doi.org/10.1371/journal.pgen.1002682
https://doi.org/10.1002/jez.1773 26. Fédrigo O, Wray GA, 2010, Developmental evolution: How
beetles evolved their shields. Curr Biol, 20: R64–R66.
15. Jia Z, Yu Y, Wang L, 2019, Learning from nature: Use material
architecture to break the performance tradeoffs. Mater Des, https://doi.org/10.1016/j.cub.2009.12.012
168: 107650.
27. Linz DM, Hu AW, Sitvarin MI, et al., 2016, Functional
https://doi.org/10.1016/j.matdes.2019.107650 value of elytra under various stresses in the red flour beetle,
Tribolium castaneum. Sci Rep, 6: 1–10.
16. Chen IH, Yang W, Meyers MA, 2015, Leatherback sea turtle
shell: A tough and flexible biological design. Acta Biomater, https://doi.org/10.1038/srep34813
28: 2–12. 28. Tomoyasu Y, Arakane Y, Kramer KJ, et al., 2009, Repeated
https://doi.org/10.1016/j.actbio.2015.09.023 co-options of exoskeleton formation during wing-to-elytron
evolution in beetles. Curr Biol, 19: 2057–2065.
17. Alheit B, Bargmann S, Reddy B, 2020, Computationally
modelling the mechanical behaviour of turtle shell sutures a https://doi.org/10.1016/j.cub.2009.11.014
natural interlocking structure. J Mech Behav Biomed Mater, 29. Chen PY, 2020, Diabolical ironclad beetles inspire tougher
110: 103973. joints for engineering applications. Nature, 586: 502–504.
https://doi.org/10.1016/j.jmbbm.2020.103973 https://doi.org/10.1038/d41586-020-02840-1
18. Gao C, Li Y, 2019, Mechanical model of bio-inspired 30. Lazarus BS, Velasco-Hogan A, Gómez-del Río T, et al., 2020,
composites with sutural tessellation. J Mech Phys Solids, A review of impact resistant biological and bioinspired
122: 190–204. materials and structures. J Mater Res Technol, 9: 15705–
https://doi.org/10.1016/j.jmps.2018.09.015 15738.
19. Lin E, Li Y, Ortiz C, et al., 2014, 3D printed, bio-inspired https://doi.org/10.1016/j.jmrt.2020.10.062
prototypes and analytical models for structured suture 31. Huang W, Restrepo D, Jung JY, et al., 2019, Multiscale
interfaces with geometrically-tuned deformation and failure toughening mechanisms in biological materials and
behavior. J Mech Phys Solids, 73: 166–182. bioinspired designs. Adv Mater, 31: 1901561.
https://doi.org/10.1016/j.jmps.2014.08.011 https://doi.org/10.1002/adma.201901561
20. Malik IA, Mirkhalaf M, Barthelat F, 2017, Bio-inspired 32. Studart AR, 2016, Additive manufacturing of biologically-
“jigsaw”-like interlocking sutures: Modeling, optimization, inspired materials. Chem Soc Rev, 45: 359–376.
3D printing and testing. J Mech Phys Solids, 102: 224–238.
https://doi.org/10.1039/C5CS00836K
https://doi.org/10.1016/j.jmps.2017.03.003
33. Gharde S, Surendren A, Korde JM, et al., 2019, Recent
21. Schmidt MJ, Farke D, Staszyk C, et al., 2022, Closure times advances in additive manufacturing of bio-inspired
of neurocranial sutures and synchondroses in Persian materials. In: Biomanufacturing, Springer, Berlin, p35–68.
compared to Domestic Shorthair cats. Sci Rep, 12: 1–13.
https://doi.org/10.1007/978-3-030-13951-3_2
https://doi.org/10.1038/s41598-022-04783-1
34. Dev S, Srivastava R, 2021, Effect of infill parameters on
22. Nicolay CW, Vaders MJ, 2006, Cranial suture complexity material sustainability and mechanical properties in fused
in white‐tailed deer (Odocoileus virginianus). J Morphol, deposition modelling process: A case study. Prog Addit
267: 841–849. Manuf, 6: 631–642.
https://doi.org/10.1002/jmor.10445 35. Gu GX, Chen CT, Richmond DJ, et al., 2018, Bioinspired
23. Bailleul AM, Scannella JB, Horner JR, et al., 2016, Fusion hierarchical composite design using machine learning:
patterns in the skulls of modern archosaurs reveal simulation, additive manufacturing, and experiment. Mater
that sutures are ambiguous maturity indicators for the Horiz, 5: 939–945.
Dinosauria. PLoS One, 11: e0147687. https://doi.org/10.1039/C8MH00653A
https://doi.org/10.1371/journal.pone.0147687 36. Dimas LS, Buehler M, 2014, Modeling and additive
manufacturing of bio-inspired composites with tunable
24. Rivera J, Hosseini MS, Restrepo D, et al., 2020, Toughening
mechanisms of the elytra of the diabolical ironclad beetle. fracture mechanical properties. Soft Matter, 10: 4436–4442.
Nature, 586: 543–548. https://doi.org/10.1039/C3SM52890A
25. Arakane Y, Lomakin J, Gehrke SH, et al., 2012, Formation of 37. Samykano M, Selvamani S, Kadirgama K, et al., 2019,
rigid, non-flight forewings (elytra) of a beetle requires two Mechanical property of FDM printed ABS: Influence of
major cuticular proteins. PLoS Genet, 8: e1002682. printing parameters. Int J Adv Manuf Technol, 102: 2779–
Volume 1 Issue 2 (2022) 11 https://doi.org/10.18063/msam.v1i2.9

