Page 17 - MSAM-1-2
P. 17

Materials Science in Additive Manufacturing                          Flexural behavior of bio-inspired sutures


               Genet, 319: 86–98.                                 https://doi.org/10.1371/journal.pgen.1002682
               https://doi.org/10.1002/jez.1773                26.  Fédrigo O, Wray GA, 2010, Developmental evolution: How
                                                                  beetles evolved their shields. Curr Biol, 20: R64–R66.
            15.  Jia Z, Yu Y, Wang L, 2019, Learning from nature: Use material
               architecture to break the performance tradeoffs. Mater Des,      https://doi.org/10.1016/j.cub.2009.12.012
               168: 107650.
                                                               27.  Linz DM, Hu AW, Sitvarin MI,  et al., 2016, Functional
               https://doi.org/10.1016/j.matdes.2019.107650       value of elytra under various stresses in the red flour beetle,
                                                                  Tribolium castaneum. Sci Rep, 6: 1–10.
            16.  Chen IH, Yang W, Meyers MA, 2015, Leatherback sea turtle
               shell: A tough and flexible biological design. Acta Biomater,      https://doi.org/10.1038/srep34813
               28: 2–12.                                       28.  Tomoyasu Y, Arakane Y, Kramer KJ, et al., 2009, Repeated
               https://doi.org/10.1016/j.actbio.2015.09.023       co-options of exoskeleton formation during wing-to-elytron
                                                                  evolution in beetles. Curr Biol, 19: 2057–2065.
            17.  Alheit B, Bargmann S, Reddy B, 2020, Computationally
               modelling the mechanical behaviour of turtle shell sutures a      https://doi.org/10.1016/j.cub.2009.11.014
               natural interlocking structure. J Mech Behav Biomed Mater,   29.  Chen PY, 2020, Diabolical ironclad beetles inspire tougher
               110: 103973.                                       joints for engineering applications. Nature, 586: 502–504.

               https://doi.org/10.1016/j.jmbbm.2020.103973        https://doi.org/10.1038/d41586-020-02840-1
            18.  Gao C, Li Y, 2019, Mechanical model of bio-inspired   30.  Lazarus BS, Velasco-Hogan A, Gómez-del Río T, et al., 2020,
               composites with sutural tessellation.  J  Mech Phys Solids,   A review of impact resistant biological and bioinspired
               122: 190–204.                                      materials and structures.  J  Mater Res Technol, 9:  15705–
               https://doi.org/10.1016/j.jmps.2018.09.015         15738.
            19.  Lin E, Li Y, Ortiz C, et al., 2014, 3D printed, bio-inspired      https://doi.org/10.1016/j.jmrt.2020.10.062
               prototypes and analytical models for structured suture   31.  Huang  W,  Restrepo  D,  Jung  JY, et al.,  2019,  Multiscale
               interfaces with geometrically-tuned deformation and failure   toughening mechanisms in biological materials and
               behavior. J Mech Phys Solids, 73: 166–182.         bioinspired designs. Adv Mater, 31: 1901561.
               https://doi.org/10.1016/j.jmps.2014.08.011         https://doi.org/10.1002/adma.201901561
            20.  Malik IA, Mirkhalaf M, Barthelat F, 2017, Bio-inspired   32.  Studart AR, 2016, Additive manufacturing of biologically-
               “jigsaw”-like interlocking sutures: Modeling, optimization,   inspired materials. Chem Soc Rev, 45: 359–376.
               3D printing and testing. J Mech Phys Solids, 102: 224–238.
                                                                  https://doi.org/10.1039/C5CS00836K
               https://doi.org/10.1016/j.jmps.2017.03.003
                                                               33.  Gharde S, Surendren A, Korde JM,  et al., 2019, Recent
            21.  Schmidt MJ, Farke D, Staszyk C, et al., 2022, Closure times   advances in additive manufacturing of bio-inspired
               of neurocranial sutures and synchondroses in Persian   materials. In: Biomanufacturing, Springer, Berlin, p35–68.
               compared to Domestic Shorthair cats. Sci Rep, 12: 1–13.
                                                                  https://doi.org/10.1007/978-3-030-13951-3_2
               https://doi.org/10.1038/s41598-022-04783-1
                                                               34.  Dev S, Srivastava R, 2021, Effect of infill parameters on
            22.  Nicolay CW, Vaders MJ, 2006, Cranial suture complexity   material sustainability and mechanical properties in fused
               in white‐tailed deer (Odocoileus virginianus).  J  Morphol,   deposition modelling process: A  case study.  Prog Addit
               267: 841–849.                                      Manuf, 6: 631–642.
               https://doi.org/10.1002/jmor.10445              35.  Gu GX, Chen CT, Richmond DJ, et al., 2018, Bioinspired
            23.  Bailleul AM, Scannella JB, Horner JR, et al., 2016, Fusion   hierarchical composite design using machine learning:
               patterns in the skulls of modern archosaurs reveal   simulation, additive manufacturing, and experiment. Mater
               that sutures are ambiguous maturity indicators for the   Horiz, 5: 939–945.
               Dinosauria. PLoS One, 11: e0147687.                https://doi.org/10.1039/C8MH00653A
               https://doi.org/10.1371/journal.pone.0147687    36.  Dimas LS, Buehler M, 2014, Modeling and additive
                                                                  manufacturing of bio-inspired composites with tunable
            24.  Rivera J, Hosseini MS, Restrepo D, et al., 2020, Toughening
               mechanisms of the elytra of the diabolical ironclad beetle.   fracture mechanical properties. Soft Matter, 10: 4436–4442.
               Nature, 586: 543–548.                              https://doi.org/10.1039/C3SM52890A
            25.  Arakane Y, Lomakin J, Gehrke SH, et al., 2012, Formation of   37.  Samykano M, Selvamani S, Kadirgama K,  et al., 2019,
               rigid, non-flight forewings (elytra) of a beetle requires two   Mechanical property of FDM printed ABS: Influence of
               major cuticular proteins. PLoS Genet, 8: e1002682.  printing parameters. Int J Adv Manuf Technol, 102: 2779–


            Volume 1 Issue 2 (2022)                         11                     https://doi.org/10.18063/msam.v1i2.9
   12   13   14   15   16   17   18   19   20   21   22