Page 18 - MSAM-1-2
P. 18

Materials Science in Additive Manufacturing                          Flexural behavior of bio-inspired sutures


               2796.                                              numerical study on tensile failure behavior of bionic suture
               https://doi.org/10.1007/s00170-019-03313-0         joints. J Mech Behav Biomed Mater, 92: 40–49.
            38.  Mazzanti V, Malagutti L, Mollica F, 2019, FDM 3D printing      https://doi.org/10.1016/j.jmbbm.2019.01.001
               of polymers containing natural fillers: A  review of their   48.  Malik IA, Barthelat F, 2018, Bioinspired sutured materials for
               mechanical properties. Polymers, 11: 1094.         strength and toughness: Pullout mechanisms and geometric
               https://doi.org/10.3390/polym11071094              enrichments. Int J Solids Struct, 138: 118–133.
            39.  Cuiffo MA, Snyder J, Elliott AM, et al., 2017, Impact of the      https://doi.org/10.1016/j.ijsolstr.2018.01.004
               fused deposition (FDM) printing process on polylactic acid   49.  Miura T, Perlyn CA, Kinboshi M, et al., 2009, Mechanism
               (PLA) chemistry and structure. Appl Sci, 7: 579.   of skull suture maintenance and interdigitation.  J  Anat,
               https://doi.org/10.3390/app7060579                 215: 642–655.
            40.  Luis E, Pan HM, Sing SL, et al., 2020, 3D direct printing      https://doi.org/10.1111/j.1469-7580.2009.01148.x
               of silicone meniscus implant using a novel heat-cured   50.  Standard A, 2014, ASTM D638-14 Standard Test Method
               extrusion-based printer. Polymers, 12: 1031.
                                                                  for Tensile Properties of Plastics. ASTM International, West
               https://doi.org/10.3390/polym12051031              Conshohocken, PA.
            41.  Velasco‐Hogan A, Xu J, Meyers MA, 2018, Additive   51.  Blaber BA, Antoniou A, 2015, Ncorr: Open-source 2D
               manufacturing as a method to design and optimize   digital image correlation matlab software.  Exp  Mech,
               bioinspired structures. Adv Mater, 30: 1800940.    55: 1105–1122.
               https://doi.org/10.1002/adma.201800940          52.  Peng C, Fox K, Qian M, et al., 2021, 3D printed sandwich
            42.  Wang D, Chen D, Chen Z, 2020, Recent progress in 3D   beams with bioinspired cores: Mechanical performance and
               printing of bioinspired structures. Front Mater, 7: 286.  modelling. Thin Walled Struct, 161: 107471.
               https://doi.org/10.3389/fmats.2020.00286           https://doi.org/10.1016/j.tws.2021.107471
            43.  Ehrmann G, Ehrmann A, 2021, Investigation of the shape-  53.  Habib F, Iovenitti P, Masood S, et al., 2017, In-plane energy
               memory properties of 3D printed PLA structures with   absorption evaluation of 3D printed polymeric honeycombs.
               different infills. Polymers, 13: 164.              Virtual Phys Prototyp, 12: 117–131.
               https://doi.org/10.3390/polym13010164              https://doi.org/10.1080/17452759.2017.1291354
            44.  Raj SA, Muthukumaran E, Jayakrishna K, 2018, A case study   54.  Kardel K, Ghaednia H, Carrano AL, et al., Experimental and
               of  3D printed  PLA and  its  mechanical  properties.  Mater   theoretical modeling of behavior of 3D-printed polymers
               Today Proc, 5: 11219–26.                           under collision with a rigid rod. Addit Manuf, 14: 87–94.
               https://doi.org/10.1016/j.matpr.2018.01.146        https://doi.org/10.1016/j.addma.2017.01.004
            45.  Kiendl J, Gao C, 2020, Controlling toughness and strength   55.  Lee SH, Lee KG, Hwang JH, et al., 2019, Evaluation of
               of FDM 3D-printed PLA components through the raster   mechanical strength and bone regeneration ability of 3D
               layup. Compos B Eng, 180: 107562.                  printed kagome-structure scaffold using rabbit calvarial
               https://doi.org/10.1016/j.compositesb.2019.107562  defect model. Mater Sci Eng C, 98: 949–959.
            46.  Rajpurohit SR, Dave HK, 2018, Effect of process parameters      https://doi.org/10.1016/j.msec.2019.01.050
               on tensile strength of FDM printed PLA part. Rapid Prototyp   56.  Liu L, Jiang Y, Boyce M, et al., 2017, The effects of morphological
               J, 24: 1317–1324.                                  irregularity on the mechanical behavior of interdigitated
               https://doi.org/10.1108/RPJ-06-2017-0134           biological sutures under tension. J Biomech, 58: 71–78.
            47.  Cao Y, Wang W, Wang J,  et al., 2019, Experimental and      https://doi.org/10.1016/j.jbiomech.2017.04.017
















            Volume 1 Issue 2 (2022)                         12                     https://doi.org/10.18063/msam.v1i2.9
   13   14   15   16   17   18   19   20   21   22   23