Page 21 - MSAM-1-4
P. 21
Materials Science in Additive Manufacturing Y O influence in heat-treated LPBF IN718 composite
2 3
processes and mechanisms. Int Mater Rev, 57: 133–164. performance. Compos Part B Eng, 163: 585–597.
https://doi.org/10.1179/1743280411Y.0000000014 https://doi.org/10.1016/j.compositesb.2018.12.146
3. Zhang YC, Li ZG, Nie PL, et al., 2013, Effect of ultrarapid 14. Tang B, Tan Y, Zhang Z, et al., 2020, Effects of process
cooling on microstructure of laser cladding IN718 coating. parameters on geometrical characteristics, microstructure
Surf Eng, 29: 414–418. and tribological properties of TiB reinforced Inconel 718
2
alloy composite coatings by laser cladding. Coatings, 10: 76.
https://doi.org/10.1179/1743294413Y.0000000142
https://doi.org/10.3390/coatings10010076
4. Singh L, Singh B, Saxena KK, 2020, Manufacturing
techniques for metal matrix composites (MMC): An 15. Dhanya MS, Shukla AK, Dineshraj S, et al., 2019, Processing
overview. Adv Mater Process Technol, 6: 224–240. and characterization of yttria-dispersed Inconel 718 ODS
alloy. Trans Indian Inst Met, 72: 1395–1398.
https://doi.org/10.1080/2374068X.2020.1729603
https://doi.org/10.1007/s12666-019-01649-5
5. Sharma V, Prakash U, Kumar BV, 2015, Surface composites
by friction stir processing: A review. J Mater Process Technol, 16. Khalaj O, Mašek B, Jirková H, et al., 2017, Experimental
224: 117–134. study on thermomechanical properties of new-generation
ODS alloys. Zenodo, 11: 501–504.
https://doi.org/10.1016/j.jmatprotec.2015.04.019
https://doi.org/10.5281/zenodo.1131439
6. Akbari M, Asadi P, Asiabaraki HR, 2022, Investigation
of wear and microstructural properties of A356/TiC 17. Wang G, Huang L, Zhao P, et al., 2020, Effect of heat
composites fabricated by FSP. Surf Rev Lett, 29: 1–10. treatment on microstructure and mechanical properties of
ODS nickel-based superalloy via strengthening mechanism.
https://doi.org/10.1142/S0218625X2250130X
JOM, 72: 3279–3287.
7. Akbari M, Asadi P, 2021, Simulation and experimental
investigation of multi-walled carbon nanotubes/aluminum https://doi.org/10.1007/s11837-020-04220-6
composite fabrication using friction stir processing. Proc 18. Chun YB, Mao X, Han CH, et al., 2017, Microstructural
Inst Mech Eng Part E J Process Mech Eng, 235: 2165–2179. evolution and tensile properties of oxide dispersion
strengthened Alloy 617 at elevated temperatures. Mater Sci
https://doi.org/10.1177/09544089211034029
Eng A, 706: 161–171.
8. Rohatgi PK, Asthana R, Das S, 1986, Solidification,
structures, and properties of cast metal-ceramic particle https://doi.org/10.1016/j.msea.2017.09.009
composites. Int Met Rev, 31: 115–139. 19. Auger MA, Leguey T, Muñoz A, et al., 2011, Microstructure
and mechanical properties of ultrafine-grained Fe-14Cr and
https://doi.org/10.1179/imtr.1986.31.1.115
ODS Fe-14Cr model alloys. J Nucl Mater, 417: 213–216.
9. Shi Z, Han F, 2015, Microstructures and properties of cast
T91-ODS alloys. Mater Res Innov, 19: S5832–S5835. https://doi.org/10.1016/j.jnucmat.2010.12.060
20. Fintová S, Kuběna I, Luptáková N, et al., 2020, Development
https://doi.org/10.1179/1432891714Z.0000000001202
of advanced Fe-Al-O ODS alloy microstructure and
10. Etemadi R, Wang B, Pillai KM, et al., 2018, Pressure infiltration properties due to heat treatment. J Mater Res, 35: 2789–2797.
processes to synthesize metal matrix composites-A review
of metal matrix composites, the technology and process https://doi.org/10.1557/jmr.2020.278
simulation. Mater Manuf Process, 33: 1261–1290. 21. De Sanctis M, Fava A, Lovicu G, et al., 2017, Mechanical
characterization of a nano-ODS steel prepared by low-
https://doi.org/10.1080/10426914.2017.1328122
energy mechanical alloying. Metals (Basel), 7: 283.
11. S-De-la-muela AM, Cambronero LE, Ruiz-Román JM,
2020, Molten metal infiltration methods to process metal https://doi.org/10.3390/met7080283
matrix syntactic foams. Metals (Basel), 10: 149. 22. Luu DN, Zhou W, Nai SM, 2022, Mitigation of liquation
cracking in selective laser melted Inconel 718 through
https://doi.org/10.3390/met10010149
optimization of layer thickness and laser energy density.
12. Kong D, Dong C, Ni X, et al., 2019, Effect of TiC content J Mater Process Technol, 299: 117374.
on the mechanical and corrosion properties of Inconel 718
alloy fabricated by a high-throughput dual-feed laser metal https://doi.org/10.1016/j.jmatprotec.2021.117374
deposition system. J Alloys Compd, 803: 637–648. 23. Luu DN, Zhou W, Nai SM, 2022, Influence of nano-Y₂O₃
addition on the mechanical properties of selective laser
https://doi.org/10.1016/j.jallcom.2019.06.317
melted Inconel 718. Mater Sci Eng A, 845: 143233.
13. Gu D, Zhang H, Dai D, et al., 2019, Laser additive
manufacturing of nano-TiC reinforced Ni-based https://doi.org/10.1016/j.msea.2022.143233
nanocomposites with tailored microstructure and 24. Yeh AC, Lu KW, Kuo CM, et al., 2011, Effect of serrated grain
Volume 1 Issue 4 (2022) 15 https://doi.org/10.18063/msam.v1i4.25

