Page 21 - MSAM-1-4
P. 21

Materials Science in Additive Manufacturing                Y O  influence in heat-treated LPBF IN718 composite
                                                                        2  3

               processes and mechanisms. Int Mater Rev, 57: 133–164.   performance. Compos Part B Eng, 163: 585–597.
               https://doi.org/10.1179/1743280411Y.0000000014     https://doi.org/10.1016/j.compositesb.2018.12.146
            3.   Zhang YC, Li ZG, Nie PL, et al., 2013, Effect of ultrarapid   14.  Tang B, Tan Y, Zhang Z,  et al., 2020, Effects of process
               cooling on microstructure of laser cladding IN718 coating.   parameters on geometrical characteristics, microstructure
               Surf Eng, 29: 414–418.                             and tribological properties of TiB  reinforced Inconel 718
                                                                                           2
                                                                  alloy composite coatings by laser cladding. Coatings, 10: 76.
               https://doi.org/10.1179/1743294413Y.0000000142
                                                                  https://doi.org/10.3390/coatings10010076
            4.   Singh L, Singh B, Saxena KK, 2020, Manufacturing
               techniques for metal matrix composites (MMC): An   15.  Dhanya MS, Shukla AK, Dineshraj S, et al., 2019, Processing
               overview. Adv Mater Process Technol, 6: 224–240.   and characterization of yttria-dispersed Inconel 718 ODS
                                                                  alloy. Trans Indian Inst Met, 72: 1395–1398.
               https://doi.org/10.1080/2374068X.2020.1729603
                                                                  https://doi.org/10.1007/s12666-019-01649-5
            5.   Sharma V, Prakash U, Kumar BV, 2015, Surface composites
               by friction stir processing: A review. J Mater Process Technol,   16.  Khalaj O, Mašek B, Jirková H,  et al., 2017, Experimental
               224: 117–134.                                      study on thermomechanical properties of new-generation
                                                                  ODS alloys. Zenodo, 11: 501–504.
               https://doi.org/10.1016/j.jmatprotec.2015.04.019
                                                                  https://doi.org/10.5281/zenodo.1131439
            6.   Akbari M, Asadi P, Asiabaraki HR, 2022, Investigation
               of wear and microstructural properties of A356/TiC   17.  Wang G, Huang L, Zhao P,  et al., 2020, Effect of heat
               composites fabricated by FSP. Surf Rev Lett, 29: 1–10.   treatment on microstructure and mechanical properties of
                                                                  ODS nickel-based superalloy via strengthening mechanism.
               https://doi.org/10.1142/S0218625X2250130X
                                                                  JOM, 72: 3279–3287.
            7.   Akbari M, Asadi P, 2021, Simulation and experimental
               investigation of multi-walled carbon nanotubes/aluminum      https://doi.org/10.1007/s11837-020-04220-6
               composite fabrication using  friction stir processing.  Proc   18.  Chun YB, Mao X, Han CH,  et al., 2017, Microstructural
               Inst Mech Eng Part E J Process Mech Eng, 235: 2165–2179.   evolution and tensile properties of oxide dispersion
                                                                  strengthened Alloy 617 at elevated temperatures. Mater Sci
               https://doi.org/10.1177/09544089211034029
                                                                  Eng A, 706: 161–171.
            8.   Rohatgi PK, Asthana R, Das S, 1986, Solidification,
               structures, and properties of cast metal-ceramic particle      https://doi.org/10.1016/j.msea.2017.09.009
               composites. Int Met Rev, 31: 115–139.           19.  Auger MA, Leguey T, Muñoz A, et al., 2011, Microstructure
                                                                  and mechanical properties of ultrafine-grained Fe-14Cr and
               https://doi.org/10.1179/imtr.1986.31.1.115
                                                                  ODS Fe-14Cr model alloys. J Nucl Mater, 417: 213–216.
            9.   Shi Z, Han F, 2015, Microstructures and properties of cast
               T91-ODS alloys. Mater Res Innov, 19: S5832–S5835.      https://doi.org/10.1016/j.jnucmat.2010.12.060
                                                               20.  Fintová S, Kuběna I, Luptáková N, et al., 2020, Development
               https://doi.org/10.1179/1432891714Z.0000000001202
                                                                  of advanced Fe-Al-O ODS alloy microstructure and
            10.  Etemadi R, Wang B, Pillai KM, et al., 2018, Pressure infiltration   properties due to heat treatment. J Mater Res, 35: 2789–2797.
               processes to synthesize metal matrix composites-A review
               of  metal  matrix  composites,  the  technology  and  process      https://doi.org/10.1557/jmr.2020.278
               simulation. Mater Manuf Process, 33: 1261–1290.   21.  De Sanctis M, Fava A, Lovicu G, et al., 2017, Mechanical
                                                                  characterization  of  a  nano-ODS  steel  prepared  by  low-
               https://doi.org/10.1080/10426914.2017.1328122
                                                                  energy mechanical alloying. Metals (Basel), 7: 283.
            11.  S-De-la-muela  AM,  Cambronero  LE,  Ruiz-Román  JM,
               2020, Molten metal infiltration methods to process metal      https://doi.org/10.3390/met7080283
               matrix syntactic foams. Metals (Basel), 10: 149.   22.  Luu DN, Zhou W, Nai SM, 2022, Mitigation of liquation
                                                                  cracking in selective laser melted Inconel 718 through
               https://doi.org/10.3390/met10010149
                                                                  optimization of layer thickness and laser energy density.
            12.  Kong D, Dong C, Ni X, et al., 2019, Effect of TiC content   J Mater Process Technol, 299: 117374.
               on the mechanical and corrosion properties of Inconel 718
               alloy fabricated by a high-throughput dual-feed laser metal      https://doi.org/10.1016/j.jmatprotec.2021.117374
               deposition system. J Alloys Compd, 803: 637–648.   23.  Luu DN, Zhou W, Nai SM, 2022, Influence of nano-Y₂O₃
                                                                  addition on the mechanical properties of selective laser
               https://doi.org/10.1016/j.jallcom.2019.06.317
                                                                  melted Inconel 718. Mater Sci Eng A, 845: 143233.
            13.  Gu D, Zhang H, Dai D,  et al., 2019, Laser additive
               manufacturing  of  nano-TiC  reinforced  Ni-based     https://doi.org/10.1016/j.msea.2022.143233
               nanocomposites  with  tailored  microstructure  and  24.  Yeh AC, Lu KW, Kuo CM, et al., 2011, Effect of serrated grain


            Volume 1 Issue 4 (2022)                         15                    https://doi.org/10.18063/msam.v1i4.25
   16   17   18   19   20   21   22   23   24   25   26