Page 22 - MSAM-1-4
P. 22

Materials Science in Additive Manufacturing                Y O  influence in heat-treated LPBF IN718 composite
                                                                        2  3

               boundaries on the creep property of Inconel 718 superalloy.   laser-generated nanoparticle-metal composite powders.
               Mater Sci Eng A, 530: 525–529.                     Procedia CIRP, 74: 196–200.
               https://doi.org/10.1016/j.msea.2011.10.014         https://doi.org/10.1016/j.procir.2018.08.093
            25.  Deng DW, Wang CG, Liu QQ, et al., 2015, Effect of standard   36.  Zöllner D, 2022, Impact of a strong temperature gradient
               heat treatment on microstructure and properties of borided   on grain growth in films.  Model Simul Mater Sci Eng,
               Inconel 718. Trans Nonferrous Met Soc China, 25: 437–443.   30: 025010.
               https://doi.org/10.1016/S1003-6326(15)63621-4      https://doi.org/10.1088/1361-651X/ac44a8
            26.  Zhang Y, Li Z, Nie P, et al., 2013, Effect of heat treatment on   37.  Rao GA, Kumar M, Srinivas M, et al., 2003, Effect of standard
               niobium segregation of laser-cladded IN718 alloy coating.   heat treatment on the microstructure and mechanical
               Metall Mater Trans A Phys Metall Mater Sci, 44: 708–716.   properties of hot isostatically pressed superalloy Inconel
               https://doi.org/10.1007/s11661-012-1459-z          718. Mater Sci Eng A, 355: 114–125.
            27.  Sui S, Chen J, Ma L, et al., 2019, Microstructures and stress      https://doi.org/10.1016/S0921-5093(03)00079-0
               rupture properties of pulse laser repaired Inconel 718   38.  Gladman T, 1999, Precipitation hardening in metals. Mater
               superalloy after different heat treatments. J Alloys Compd,   Sci Technol, 15: 30–36.
               770: 125–135.
                                                                  https://doi.org/10.1179/026708399773002782
               https://doi.org/10.1016/j.jallcom.2018.08.063
                                                               39.  Sabelkin VP, Cobb GR, Doane BM, et al., 2020, Torsional
            28.  Zhao Y, Li K, Gargani M, et al., 2020, A comparative analysis   behavior of additively manufactured nickel alloy 718 under
               of Inconel 718 made by additive manufacturing and suction   monotonic loading and low cycle fatigue.  Mater Today
               casting: Microstructure evolution in homogenization. Addit   Commun, 24: 101256.
               Manuf, 36: 101404.
                                                                  https://doi.org/10.1016/j.mtcomm.2020.101256
               https://doi.org/10.1016/j.addma.2020.101404
                                                               40.  Roper CM, Heczel A, Bhattiprolu VS, et al., 2022, Effect of
            29.  Kumara C, Balachandramurthi AR, Goel S,  et al., 2020,   laser heating on microstructure and deposition properties of
               Toward a better understanding of phase transformations in   cold sprayed SS304L. Materialia, 22: 101372.
               additive manufacturing of Alloy 718. Materialia, 13: 100862.
                                                                  https://doi.org/10.1016/j.mtla.2022.101372
               https://doi.org/10.1016/j.mtla.2020.100862
                                                               41.  Amato KN, Gaytan SM, Murr LE, et al., 2012, Microstructures
            30.  Mills WJ, 1984, Effect of heat treatment on the tensile and   and mechanical behavior of Inconel 718 fabricated by
               fracture toughness behavior of Alloy 718 weldments. Weld J,   selective laser melting. Acta Mater, 60: 2229–2239.
               63(8): 237s-245s.
                                                                  https://doi.org/10.1016/j.actamat.2011.12.032
            31.  Cao  Y,  Bai  P,  Liu  F,  et al.,  2019,  Investigation  on  the
               precipitates  of  IN718  alloy  fabricated  by  selective  laser   42.  Wang Y, Shi J, Deng X, et al., 2012, Contribution of Different
               melting. Metals (Basel), 9: 1128.                  Strengthening effects in Particulate-reinforced Metal Matrix
                                                                  Nanocomposites Prepared by Additive Manufacturing. In:
               https://doi.org/10.3390/met9101128                 Proceeding Advanced Manufacturing. American Society
            32.  Li  X,  Chu  H,  Chen  Y,  et al.,  2019,  Microstructure  and   of Mechanical Engineers. Vol.  2; 2016. p1–7. Available
               properties of the laser cladding ODS layers on CLAM steel.   from:   https://www.asmedigitalcollection.asme.org/IMECE/
               Surf Coatings Technol, 357: 172–179.               proceedings/IMECE2016/50527phoenix,arizona, USA/265241
                                                                  [Last accessed on 2017 Mar 22].
               https://doi.org/10.1016/j.surfcoat.2018.10.006
                                                               43.  Zhang  Z,  Chen  DL,  2006,  Consideration  of  Orowan
            33.  Guo Y, Li M, Chen C,  et al., 2020, Oxide dispersion   strengthening effect in particulate-reinforced metal matrix
               strengthened FeCoNi concentrated solid-solution alloys   nanocomposites: A model for predicting their yield strength.
               synthesized by mechanical alloying.  Intermetallics,   Scr Mater, 54: 1321–1316.
               117: 106674.
                                                                  https://doi.org/10.1016/j.scriptamat.2005.12.017
               https://doi.org/10.1016/j.intermet.2019.106674
                                                               44.  EOS NickelAlloy IN718 Material Data Sheet; 2020.
            34.  Shi Y, Lu Z, Yu L, et al., 2020, Microstructure and tensile
               properties of Zr-containing ODS-FeCrAl alloy fabricated   45.  Martienssen W, Warlimont H, 2005, Springer Handbook of
               by  laser  additive  manufacturing.  Mater Sci Eng A,   Condensed Matter and Materials Data. Berlin: Springer.
               774: 138937.                                       https://doi.org/10.1007/3-540-30437-1
               https://doi.org/10.1016/j.msea.2020.138937
                                                               46.  Ferguson JB, Schultz BF, Venugopalan D, et al., 2014, On the
            35.  Wilms MB, Streubel R, Frömel F, et al., 2018, Laser additive   superposition of strengthening mechanisms in dispersion
               manufacturing of oxide dispersion strengthened steels using   strengthened alloys and metal-matrix nanocomposites:


            Volume 1 Issue 4 (2022)                         16                     https://doi.org/10.18063/msam.v1i4.25
   17   18   19   20   21   22   23   24   25   26   27