Page 22 - MSAM-1-4
P. 22
Materials Science in Additive Manufacturing Y O influence in heat-treated LPBF IN718 composite
2 3
boundaries on the creep property of Inconel 718 superalloy. laser-generated nanoparticle-metal composite powders.
Mater Sci Eng A, 530: 525–529. Procedia CIRP, 74: 196–200.
https://doi.org/10.1016/j.msea.2011.10.014 https://doi.org/10.1016/j.procir.2018.08.093
25. Deng DW, Wang CG, Liu QQ, et al., 2015, Effect of standard 36. Zöllner D, 2022, Impact of a strong temperature gradient
heat treatment on microstructure and properties of borided on grain growth in films. Model Simul Mater Sci Eng,
Inconel 718. Trans Nonferrous Met Soc China, 25: 437–443. 30: 025010.
https://doi.org/10.1016/S1003-6326(15)63621-4 https://doi.org/10.1088/1361-651X/ac44a8
26. Zhang Y, Li Z, Nie P, et al., 2013, Effect of heat treatment on 37. Rao GA, Kumar M, Srinivas M, et al., 2003, Effect of standard
niobium segregation of laser-cladded IN718 alloy coating. heat treatment on the microstructure and mechanical
Metall Mater Trans A Phys Metall Mater Sci, 44: 708–716. properties of hot isostatically pressed superalloy Inconel
https://doi.org/10.1007/s11661-012-1459-z 718. Mater Sci Eng A, 355: 114–125.
27. Sui S, Chen J, Ma L, et al., 2019, Microstructures and stress https://doi.org/10.1016/S0921-5093(03)00079-0
rupture properties of pulse laser repaired Inconel 718 38. Gladman T, 1999, Precipitation hardening in metals. Mater
superalloy after different heat treatments. J Alloys Compd, Sci Technol, 15: 30–36.
770: 125–135.
https://doi.org/10.1179/026708399773002782
https://doi.org/10.1016/j.jallcom.2018.08.063
39. Sabelkin VP, Cobb GR, Doane BM, et al., 2020, Torsional
28. Zhao Y, Li K, Gargani M, et al., 2020, A comparative analysis behavior of additively manufactured nickel alloy 718 under
of Inconel 718 made by additive manufacturing and suction monotonic loading and low cycle fatigue. Mater Today
casting: Microstructure evolution in homogenization. Addit Commun, 24: 101256.
Manuf, 36: 101404.
https://doi.org/10.1016/j.mtcomm.2020.101256
https://doi.org/10.1016/j.addma.2020.101404
40. Roper CM, Heczel A, Bhattiprolu VS, et al., 2022, Effect of
29. Kumara C, Balachandramurthi AR, Goel S, et al., 2020, laser heating on microstructure and deposition properties of
Toward a better understanding of phase transformations in cold sprayed SS304L. Materialia, 22: 101372.
additive manufacturing of Alloy 718. Materialia, 13: 100862.
https://doi.org/10.1016/j.mtla.2022.101372
https://doi.org/10.1016/j.mtla.2020.100862
41. Amato KN, Gaytan SM, Murr LE, et al., 2012, Microstructures
30. Mills WJ, 1984, Effect of heat treatment on the tensile and and mechanical behavior of Inconel 718 fabricated by
fracture toughness behavior of Alloy 718 weldments. Weld J, selective laser melting. Acta Mater, 60: 2229–2239.
63(8): 237s-245s.
https://doi.org/10.1016/j.actamat.2011.12.032
31. Cao Y, Bai P, Liu F, et al., 2019, Investigation on the
precipitates of IN718 alloy fabricated by selective laser 42. Wang Y, Shi J, Deng X, et al., 2012, Contribution of Different
melting. Metals (Basel), 9: 1128. Strengthening effects in Particulate-reinforced Metal Matrix
Nanocomposites Prepared by Additive Manufacturing. In:
https://doi.org/10.3390/met9101128 Proceeding Advanced Manufacturing. American Society
32. Li X, Chu H, Chen Y, et al., 2019, Microstructure and of Mechanical Engineers. Vol. 2; 2016. p1–7. Available
properties of the laser cladding ODS layers on CLAM steel. from: https://www.asmedigitalcollection.asme.org/IMECE/
Surf Coatings Technol, 357: 172–179. proceedings/IMECE2016/50527phoenix,arizona, USA/265241
[Last accessed on 2017 Mar 22].
https://doi.org/10.1016/j.surfcoat.2018.10.006
43. Zhang Z, Chen DL, 2006, Consideration of Orowan
33. Guo Y, Li M, Chen C, et al., 2020, Oxide dispersion strengthening effect in particulate-reinforced metal matrix
strengthened FeCoNi concentrated solid-solution alloys nanocomposites: A model for predicting their yield strength.
synthesized by mechanical alloying. Intermetallics, Scr Mater, 54: 1321–1316.
117: 106674.
https://doi.org/10.1016/j.scriptamat.2005.12.017
https://doi.org/10.1016/j.intermet.2019.106674
44. EOS NickelAlloy IN718 Material Data Sheet; 2020.
34. Shi Y, Lu Z, Yu L, et al., 2020, Microstructure and tensile
properties of Zr-containing ODS-FeCrAl alloy fabricated 45. Martienssen W, Warlimont H, 2005, Springer Handbook of
by laser additive manufacturing. Mater Sci Eng A, Condensed Matter and Materials Data. Berlin: Springer.
774: 138937. https://doi.org/10.1007/3-540-30437-1
https://doi.org/10.1016/j.msea.2020.138937
46. Ferguson JB, Schultz BF, Venugopalan D, et al., 2014, On the
35. Wilms MB, Streubel R, Frömel F, et al., 2018, Laser additive superposition of strengthening mechanisms in dispersion
manufacturing of oxide dispersion strengthened steels using strengthened alloys and metal-matrix nanocomposites:
Volume 1 Issue 4 (2022) 16 https://doi.org/10.18063/msam.v1i4.25

