Page 23 - MSAM-1-4
P. 23

Materials Science in Additive Manufacturing                Y O  influence in heat-treated LPBF IN718 composite
                                                                        2  3

               Considerations of stress and energy. Met Mater Int, 20: 375–388.   of SiC particle-reinforced 2080 Al matrix composites. Metall
                                                                  Mater Trans A, 31: 531–540.
               https://doi.org//10.1007/s12540-014-2017-6
                                                                  https://doi.org//10.1007/s11661-000-0288-7
            47.  Ferguson JB, Sheykh-Jaberi F, Kim CS,  et al., 2012, On
               the  strength  and  strain  to  failure  in  particle-reinforced   53.  Wang S, Zheng Y, Zhang G,  et al., 2019, Effect of NbC
               magnesium  metal-matrix nanocomposites (Mg  MMNCs).   addition on the microstructure, mechanical properties and
               Mater Sci Eng A, 558: 193–204.                     thermal shock resistance of Ti(C,N)-based cermets. Mater
                                                                  Res Express, 6: 056557.
               https://doi.org/10.1016/j.msea.2012.07.111
                                                                  https://doi.org/10.1088/2053-1591/ab07e9
            48.  Vogt R, Zhang Z, Li Y, et al., 2009, The absence of thermal
               expansion mismatch strengthening in nanostructured   54.  Ceschini L, Dahle A, Gupta M,  et al., 2017,  Aluminum
               metal-matrix composites. Scr Mater, 61: 1052–1055.   and Magnesium Metal Matrix Nanocomposites. Singapore:
                                                                  Springer Singapore.
               https://doi.org/10.1016/j.scriptamat.2009.08.025
                                                                  https://doi.org/10.1007/978-981-10-2681-2
            49.  Nardone VC, Prewo KM, 1986, On the strength of
               discontinuous silicon carbide reinforced aluminum   55.  Patil RV, Kale GB, 1996, Chemical diffusion of niobium in
               composites. Scr Metall, 20: 43–48.                 nickel. J Nucl Mater, 230: 57–60.
               https://doi.org/10.1016/0036-9748(86)90210-3       https://doi.org/10.1016/0022-3115(96)80010-9
            50.  Kim CS, Sohn I, Nezafati M, et al., 2013, Prediction models   56.  Rohrer GS, 1948, Introduction to grains, phases, and
               for the yield strength of particle-reinforced unimodal pure   interfaces-an interpretation of microstructure. Metall Mater
               magnesium (Mg) metal matrix nanocomposites (MMNCs).   Trans A Phys Metall Mater Sci, 175: 15–51.
               J Mater Sci, 48: 4191–4204.
                                                                  https://doi.org/10.1007/s11661-010-0215-5
               https://doi.org/10.1007/s10853-013-7232-x
                                                               57.  Cozar R, Pineau A, 1973, Morphology of  γ’ and  γ’’
            51.  Redsten AM, Klier EM, Brown AM, et al., 1995, Mechanical   precipitates and thermal stability of Inconel 718 type alloys.
               properties and microstructure of cast oxide-dispersion-  Metall Trans, 4: 47–59.
               strengthened aluminum. Mater Sci Eng A, 201: 88–102.
                                                                  https://doi.org/10.1007/BF02649604
               https://doi.org/10.1016/0921-5093(94)09741-0
                                                               58.  Burke  MG, Miller  MK,  2012,  Precipitation  in  Alloy  718:
            52.  Chawla N, Habel U, Shen YL,  et al., 2000, The effect of   A  Combined AEM and APFIM Investigation. Tennessee:
               matrix microstructure on the tensile and fatigue behavior   Oak Ridge National Laboratory. p337–50.






































            Volume 1 Issue 4 (2022)                         17                    https://doi.org/10.18063/msam.v1i4.25
   18   19   20   21   22   23   24   25   26   27   28