Page 109 - MSAM-2-3
P. 109
Materials Science in Additive Manufacturing Validation of a novel ML model for AM-PSP
https://doi.org/10.1016/j.msea.2016.11.084 https://doi.org/10.1038/srep02810
46. Lin JJ, Lv YH, Liu YX, 2016, Microstructural evolution 57. Ko H, Witherell P, Ndiaye NY, et al., 2019, Machine learning
and mechanical properties of Ti-6Al-4V wall deposited based continuous knowledge engineering for additive
by pulsed plasma arc additive manufacturing. Mater Des, manufacturing. In: IEEE International Conference on
102: 30–40. Automation Science and Engineering, p. 648–654.
https://doi.org/10.1016/j.matdes.2016.04.018 https://doi.org/10.1109/COASE.2019.8843316
47. Zhai Y, Galarraga H, Lados DA, 2016, Microstructure, 58. Baumann FW, Sekulla A, Hassler M, et al., 2018, Trends of
static properties, and fatigue crack growth mechanisms in machine learning in additive manufacturing. Int J Rapid
Ti-6Al-4V fabricated by additive manufacturing: LENS and Manuf, 7: 310.
EBM. Eng Fail Anal, 69: 3–14. https://doi.org/10.1504/IJRAPIDM.2018.095788
https://doi.org/10.1016/j.engfailanal.2016.05.036 59. Delli U, Chang S, 2018, Automated process monitoring in
48. Liu S, Shin YC, 2019, Additive manufacturing of Ti6Al4V 3D printing using supervised machine learning. Proc Manuf,
alloy : A review. Mater Des, 164: 107552. 26: 865–870.
https://doi.org/10.1016/j.matdes.2018.107552 https://doi.org/10.1016/j.promfg.2018.07.111
49. Bonaiti G, Parenti P, Annoni M, et al., 2017, Micro-milling 60. Yao X, Moon SK, Bi G, 2017, A hybrid machine learning
machinability of DED additive titanium Ti-6Al-4V. Proc approach for additive manufacturing design feature
Manuf, 10: 497–509. recommendation. Rapid Prototype J, 23: 983–997.
https://doi.org/10.1016/j.promfg.2017.07.104 61. ASME, 2019, ASME Y14.41-Digital Product Definition Data
Practices: ASME Digital Standards. New York City: ASME,
50. Oyelola O, Crawforth P, M’Saoubi R, et al., 2018, Machining p. 128. Available: https://www.asme.org/codes-standards/
of functionally graded Ti6Al4V/WC produced by directed find-codes-standards/y14-5-dimensioning-tolerancing
energy deposition. Addit Manuf, 24: 20–29. [Last accessed on 2023 Sep 21].
https://doi.org/10.1016/j.addma.2018.09.007 62. Tilton M, Borjali A, Isaacson A, et al., 2021, On structure
51. Acharya R, Sharon JA, Staroselsky A, 2017, Prediction of and mechanics of biomimetic meta-biomaterials fabricated
microstructure in laser powder bed fusion process. Acta via metal additive manufacturing. Mater Des, 201: 109498.
Mater, 124: 360–371. https://doi.org/10.1016/J.MATDES.2021.109498
https://doi.org/10.1016/j.actamat.2016.11.018 63. Wang SQ, Liu JH, Chen DL, 2014, Effect of strain rate and
52. Fergani O, Berto F, Welo T, et al., 2017, Analytical modelling temperature on strain hardening behavior of a dissimilar
of residual stress in additive manufacturing. Fatigue Fract joint between Ti-6Al-4V and Ti17 alloys. Mater Des,
Eng Mater Struct, 40: 971–978. 56: 174–184.
https://doi.org/10.1111/ffe.12560 https://doi.org/10.1016/j.matdes.2013.11.003
53. Chen Q, Guillemot G, Gandin CA, et al., 2017, Three- 64. Rao PP, Tangri K, 1991, Yielding and work hardening
dimensional finite element thermomechanical modeling behaviour of titanium aluminides at different temperatures.
of additive manufacturing by selective laser melting for Mater Sci Eng A, 132: 49–59.
ceramic materials. Addit Manuf, 16: 124–137. https://doi.org/10.1016/0921-5093(91)90360-Y
https://doi.org/10.1016/j.addma.2017.02.005 65. Bystrzanowski S, Bartels A, Clemens H, et al., 2008,
54. Bostanabad R, Zhang Y, Li X, et al., 2018, Computational Characteristics of the tensile flow behavior of Ti-46Al-9Nb
microstructure characterization and reconstruction: Review sheet material-analysis of thermally activated processes of
of the state-of-the-art techniques. Prog Mater Sci, 95: 1–41. plastic deformation. Intermetallics (Barking), 16: 717–726.
https://doi.org/10.1016/j.pmatsci.2018.01.005 https://doi.org/10.1016/j.intermet.2008.02.008
55. Popova E, Rodgers TM, Gong X, et al., 2017, Process- 66. Lu W, Li X, Lei Y, et al., 2012, Study on the mechanical
structure linkages using a data science approach: Application heterogeneity of electron beam welded thick TC4-DT joints.
to simulated additive manufacturing data. Integr Mater Mater Sci Eng A, 540: 135–141.
Manuf Innov, 6: 54–68. https://doi.org/10.1016/j.msea.2012.01.117
https://doi.org/10.1007/s40192-017-0088-1 67. Chiou ST, Tsai HL, Lee WS, 2007, Effects of strain rate and
56. Pilania G, Wang C, Jiang X, et al., 2013, Accelerating temperature on the deformation and fracture behaviour of
materials property predictions using machine learning. Sci titanium alloy. Mater Trans, 48: 2525–2533.
Rep, 3: 1–6. https://doi.org/10.2320/MATERTRANS.MRA2007607
Volume 2 Issue 3 (2023) 17 https://doi.org/10.36922/msam.0999

