Page 109 - MSAM-2-3
P. 109

Materials Science in Additive Manufacturing                        Validation of a novel ML model for AM-PSP



               https://doi.org/10.1016/j.msea.2016.11.084         https://doi.org/10.1038/srep02810
            46.  Lin  JJ, Lv  YH,  Liu  YX, 2016,  Microstructural  evolution   57.  Ko H, Witherell P, Ndiaye NY, et al., 2019, Machine learning
               and mechanical properties  of Ti-6Al-4V  wall deposited   based continuous knowledge engineering for additive
               by pulsed plasma arc additive manufacturing.  Mater Des,   manufacturing. In: IEEE International Conference on
               102: 30–40.                                        Automation Science and Engineering, p. 648–654.
               https://doi.org/10.1016/j.matdes.2016.04.018       https://doi.org/10.1109/COASE.2019.8843316
            47.  Zhai Y, Galarraga H, Lados DA, 2016, Microstructure,   58.  Baumann FW, Sekulla A, Hassler M, et al., 2018, Trends of
               static properties, and fatigue crack growth mechanisms in   machine learning in additive manufacturing.  Int J Rapid
               Ti-6Al-4V fabricated by additive manufacturing: LENS and   Manuf, 7: 310.
               EBM. Eng Fail Anal, 69: 3–14.                      https://doi.org/10.1504/IJRAPIDM.2018.095788
               https://doi.org/10.1016/j.engfailanal.2016.05.036  59.  Delli U, Chang S, 2018, Automated process monitoring in
            48.  Liu S, Shin YC, 2019, Additive manufacturing of Ti6Al4V   3D printing using supervised machine learning. Proc Manuf,
               alloy : A review. Mater Des, 164: 107552.          26: 865–870.
               https://doi.org/10.1016/j.matdes.2018.107552       https://doi.org/10.1016/j.promfg.2018.07.111

            49.  Bonaiti G, Parenti P, Annoni M, et al., 2017, Micro-milling   60.  Yao X, Moon SK, Bi G, 2017, A hybrid machine learning
               machinability of DED additive titanium Ti-6Al-4V.  Proc   approach for additive manufacturing design feature
               Manuf, 10: 497–509.                                recommendation. Rapid Prototype J, 23: 983–997.
               https://doi.org/10.1016/j.promfg.2017.07.104    61.  ASME, 2019, ASME Y14.41-Digital Product Definition Data
                                                                  Practices: ASME Digital Standards. New York City: ASME,
            50.  Oyelola O, Crawforth P, M’Saoubi R, et al., 2018, Machining   p.  128. Available: https://www.asme.org/codes-standards/
               of functionally graded Ti6Al4V/WC produced by directed   find-codes-standards/y14-5-dimensioning-tolerancing
               energy deposition. Addit Manuf, 24: 20–29.         [Last accessed on 2023 Sep 21].
               https://doi.org/10.1016/j.addma.2018.09.007     62.  Tilton M, Borjali A, Isaacson A, et al., 2021, On structure
            51.  Acharya R, Sharon JA, Staroselsky A, 2017, Prediction of   and mechanics of biomimetic meta-biomaterials fabricated
               microstructure in laser powder bed fusion process.  Acta   via metal additive manufacturing. Mater Des, 201: 109498.
               Mater, 124: 360–371.                               https://doi.org/10.1016/J.MATDES.2021.109498
               https://doi.org/10.1016/j.actamat.2016.11.018   63.  Wang SQ, Liu JH, Chen DL, 2014, Effect of strain rate and
            52.  Fergani O, Berto F, Welo T, et al., 2017, Analytical modelling   temperature on strain hardening behavior of a dissimilar
               of residual stress in additive manufacturing. Fatigue Fract   joint  between  Ti-6Al-4V  and Ti17  alloys.  Mater Des,
               Eng Mater Struct, 40: 971–978.                     56: 174–184.
               https://doi.org/10.1111/ffe.12560                  https://doi.org/10.1016/j.matdes.2013.11.003
            53.  Chen Q, Guillemot G, Gandin CA,  et  al., 2017, Three-  64.  Rao PP, Tangri K, 1991, Yielding and work hardening
               dimensional finite element thermomechanical modeling   behaviour of titanium aluminides at different temperatures.
               of additive manufacturing by selective laser melting for   Mater Sci Eng A, 132: 49–59.
               ceramic materials. Addit Manuf, 16: 124–137.       https://doi.org/10.1016/0921-5093(91)90360-Y
               https://doi.org/10.1016/j.addma.2017.02.005     65.  Bystrzanowski  S,  Bartels  A,  Clemens  H,  et al.,  2008,
            54.  Bostanabad R, Zhang Y, Li X, et al., 2018, Computational   Characteristics of the tensile flow behavior of Ti-46Al-9Nb
               microstructure characterization and reconstruction: Review   sheet material-analysis of thermally activated processes of
               of the state-of-the-art techniques. Prog Mater Sci, 95: 1–41.  plastic deformation. Intermetallics (Barking), 16: 717–726.
               https://doi.org/10.1016/j.pmatsci.2018.01.005      https://doi.org/10.1016/j.intermet.2008.02.008
            55.  Popova E, Rodgers TM, Gong X,  et al., 2017, Process-  66.  Lu W, Li X, Lei Y,  et al., 2012, Study on the mechanical
               structure linkages using a data science approach: Application   heterogeneity of electron beam welded thick TC4-DT joints.
               to simulated additive manufacturing data.  Integr Mater   Mater Sci Eng A, 540: 135–141.
               Manuf Innov, 6: 54–68.                             https://doi.org/10.1016/j.msea.2012.01.117
               https://doi.org/10.1007/s40192-017-0088-1       67.  Chiou ST, Tsai HL, Lee WS, 2007, Effects of strain rate and
            56.  Pilania G, Wang C, Jiang X,  et al., 2013, Accelerating   temperature on the deformation and fracture behaviour of
               materials property predictions using machine learning. Sci   titanium alloy. Mater Trans, 48: 2525–2533.
               Rep, 3: 1–6.                                       https://doi.org/10.2320/MATERTRANS.MRA2007607


            Volume 2 Issue 3 (2023)                         17                      https://doi.org/10.36922/msam.0999
   104   105   106   107   108   109   110   111   112   113   114