Page 108 - MSAM-2-3
P. 108

Materials Science in Additive Manufacturing                        Validation of a novel ML model for AM-PSP



               https://doi.org/10.1016/j.msea.2009.11.015         https://doi.org/10.1016/j.matdes.2006.08.008

            26.  Cheng B, Price S, Lydon J, et al., 2014, On process temperature   36.  Taminger K, Hafley R, 2003, Electron Beam Freeform
               in powder-bed electron beam additive manufacturing:   Fabrication: A Rapid Metal Deposition Process. Proceedings
               Model development and validation. J Manuf Sci Eng Trans   of the 3   Annual Automotive Composites Conference,
                                                                         rd
               ASME, 136: 061019.                                 3, p.  9–10. Available from: https://ntrs.nasa.gov/
                                                                  citations/20040042496 [Last accessed on 2023 Aug 25].
               https://doi.org/10.1115/1.4028484
                                                               37.  Hofmann DC, Roberts S, Otis R, et al., 2014, Developing
            27.  King WE, Anderson AT, Ferencz RM,  et al., 2015, Laser   gradient metal alloys through radial deposition additive
               powder bed fusion additive manufacturing of metals;   manufacturing. Sci Rep, 4: 5357.
               physics, computational, and materials challenges. Appl Phys
               Rev, 2: 041304.                                    https://doi.org/10.1038/srep05357
               https://doi.org/10.1063/1.4937809               38.  Sun G, Zhou R, Lu J, et al., 2015, Mazumder, ‘Evaluation
                                                                  of defect density, microstructure, residual stress, elastic
            28.  Loh LE, Chua CK, Yeong WY,  et al., 2015, Numerical   modulus, hardness and strength of laser-deposited AISI
               investigation and an effective modelling on the selective   4340 steel. Acta Mater, 84: 172–189.
               laser melting (SLM) process with aluminium alloy 6061. Int
               J Heat Mass Transf, 80: 288–300.                   https://doi.org/10.1016/j.actamat.2014.09.028
               https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.09.014  39.  Zhang YN, Cao X, Wanjara P, et al., 2015, Tensile properties
                                                                  of laser additive manufactured Inconel 718 using filler wire.
            29.  Vilardell AM, Fredriksson G, Yadroitsev I,  et al., 2019,   J Mater Res, 30: 2006–2020.
               Fracture mechanisms in the as-built and stress-relieved laser
               powder bed fusion Ti6Al4V ELI alloy. Opt Laser Technol,      https://doi.org/10.1557/jmr.2014.199
               109: 608–615.                                   40.  Derekar KS, 2018, A review of wire arc additive
                                                                  manufacturing and advances in wire arc additive
               https://doi.org/10.1016/j.optlastec.2018.08.042
                                                                  manufacturing of aluminium.  Mater Sci Technol,
            30.  Heigel JC, Phan TQ, Fox JC,  et al., 2018, Experimental   34: 895–916.
               investigation of residual stress and its impact on machining      https://doi.org/10.1080/02670836.2018.1455012
               in hybrid additive/subtractive manufacturing. Proc Manuf,
               26: 929–940.                                    41.  McAndrew  AR,  Rosales  MA,  Colegrove  PA,  et al., 2018,
                                                                  Interpass rolling of Ti-6Al-4V wire + arc additively
               https://doi.org/10.1016/J.PROMFG.2018.07.120
                                                                  manufactured features for microstructural refinement.
            31.  Ming W, Chen J, An Q, et al., 2019, Dynamic mechanical   Addit Manuf, 21: 340–349.
               properties and machinability characteristics of selective      https://doi.org/10.1016/j.addma.2018.03.006
               laser melted and forged Ti6Al4V. J Mater Process Technol,
               271: 284–292.                                   42.  Guzanová A, Ižaríková G, Brezinová J, et al., 2017, Influence
                                                                  of build orientation, heat treatment, and laser power on
               https://doi.org/10.1016/j.jmatprotec.2019.04.015   the hardness of Ti6Al4V manufactured using the DMLS

            32.  Vrancken B, Thijs L, Kruth JP, et al., 2012, Heat treatment of   process. Metals (Basel), 7: 318.
               Ti6Al4V produced by selective laser melting: Microstructure      https://doi.org/10.3390/met7080318
               and mechanical properties. J Alloys Compd, 541: 177–185.
                                                               43.  Gorsse  S,  Hutchinson  C,  Gouné  M,  et al.,  2017,
               https://doi.org/10.1016/j.jallcom.2012.07.022      Additive manufacturing of metals: a brief review of the
            33.  Ren S, Chen Y, Liu T, et al., 2019, Effect of build orientation   characteristic microstructures and properties of steels,
               on mechanical properties and microstructure of Ti-6Al-4V   Ti-6Al-4V and high-entropy alloys.  Sci Technol Adv
               manufactured by selective laser melting. Metall Mater Trans   Mater, 18: 584–610.
               A Phys Metall Mater Sci, 50: 4388–4409.            https://doi.org/10.1080/14686996.2017.1361305
               https://doi.org/10.1007/s11661-019-05322-w      44.  Neikter M, Åkerfeldt P, Pederson R,  et al., 2018,
            34.  Thijs L, Vrancken B, Kruth JP, et al., 2013, The Influence of   Microstructural  characterization  and  comparison
               Process Parameters and Scanning Strategy on the Texture   of Ti-6Al-4V manufactured with different additive
               in Ti6Al4V Part Produced by Selective Laser Melting. In:   manufacturing processes. Mater Charact, 143: 68–75.
               Proceedings of the Advanced Materials, Processes and      https://doi.org/10.1016/j.matchar.2018.02.003
               Applications for Additive Manufacturing, Vol. 1. p. 21–28.
                                                               45.  Li GC, Li J, Tian XJ,  et al., 2017, Microstructure and
            35.  Wanjara P, Brochu M, Jahazi M, 2007, Electron beam   properties of a novel titanium alloy Ti-6Al-2V-1.5Mo-
               freeforming of stainless steel using solid wire feed.  Mater   0.5Zr-0.3Si manufactured by laser additive manufacturing.
               Des, 28: 2278–2286.                                Mater Sci Eng A, 684: 233–238.


            Volume 2 Issue 3 (2023)                         16                      https://doi.org/10.36922/msam.0999
   103   104   105   106   107   108   109   110   111   112   113