Page 110 - MSAM-2-3
P. 110

Materials Science in Additive Manufacturing                        Validation of a novel ML model for AM-PSP




            68.  E. Committee of C, 2001, Aeronautical Materials, ‘中国航  79.  Polishetty A, Shunmugavel M, Goldberg M,  et al., 2017,
               空材料手册 (China Aeronautical Materials  Handbook).    Cutting force and surface finish analysis of machining
               2  ed. Beijing: Standing Press China, p. 874.      additive  manufactured  titanium  alloy  Ti-6Al-4V.  Proc
                nd
                                                                  Manuf, 7: 284–289.
            69.  Rafi HK, Karthik NV, Gong H, et al., 2013, Microstructures
               and mechanical properties of Ti6Al4V parts fabricated by      https://doi.org/10.1016/j.promfg.2016.12.071
               selective laser melting and electron beam melting. J Mater   80.  Wu X, Jiang P, Chen L,  et al., 2014, Extraordinary strain
               Eng Perform, 22: 3872–3883.
                                                                  hardening by gradient structure. Proc Natl Acad Sci U S A,
               https://doi.org/10.1007/S11665-013-0658-0/FIGURES/14  111: 7197–7201.
            70.  Liu Q, Wang Y, Zheng H, et al., 2016, Microstructure and      https://doi.org/10.1073/pnas.1324069111
               mechanical properties of LMD-SLM hybrid forming   81.  Jiao Y, Stillinger FH, Torquato S, 2007, Modeling
               Ti6Al4V alloy. Mater Sci Eng A, 660: 24–33.
                                                                  heterogeneous materials via two-point correlation functions:
               https://doi.org/10.1016/j.msea.2016.02.069         Basic principles. Phys Rev E Stat Nonlin Soft Matter Phys,
                                                                  76: 1–15.
            71.  Shi X, Ma S, Liu C, et al., 2017, Selective laser melting-wire
               arc additive manufacturing hybrid fabrication of Ti-6Al-4V      https://doi.org/10.1103/PhysRevE.76.031110
               alloy: Microstructure and mechanical properties. Mater Sci   82.  Berryman JG, Blair SC, 1986, Use of digital image analysis
               Eng A, 684: 196–204.
                                                                  to estimate fluid permeability of porous materials:
               https://doi.org/10.1016/j.msea.2016.12.065         Application of two-point correlation functions. J Appl Phys,
                                                                  60: 1930–1938.
            72.  Simonelli M, Tse YY, Tuck C, 2014, Effect of the build
               orientation on the mechanical properties and fracture      https://doi.org/10.1063/1.337245
               modes of SLM Ti-6Al-4V. Mater Sci Eng A, 616: 1–11.
                                                               83.  Corson PB, 1974, Correlation functions for predicting
               https://doi.org/10.1016/j.msea.2014.07.086         properties of heterogeneous materials. I. Experimental
                                                                  measurement of spatial correlation functions in multiphase
            73.  Tan X, Kok Y, Tan YJ, et al., 2015, Graded microstructure and
               mechanical properties of additive manufactured Ti-6Al-4V   solids. J Appl Phys, 45: 3159–3164.
               via electron beam melting. Acta Mater, 97: 1–16.     https://doi.org/10.1063/1.1663741
               https://doi.org/10.1016/j.actamat.2015.06.036   84.  Turner  DM,  Niezgoda  SR,  Kalidindi  SR,  2016,  Efficient
                                                                  computation of the angularly resolved chord length
            74.  Murr LE, Esquivel EV, Quinones SA,  et  al., 2009,
               Microstructures and mechanical properties of electron   distributions and lineal path functions in large microstructure
               beam-rapid manufactured Ti-6Al-4V biomedical prototypes   datasets. Model Simul Mat Sci Eng, 24: 075002.
               compared to wrought Ti-6Al-4V. Mater Charact, 60: 96–105.     https://doi.org/10.1088/0965-0393/24/7/075002
               https://doi.org/10.1016/j.matchar.2008.07.006   85.  Fitzpatrick ME, Fry AT, Holdway P,  et  al., 2005,
                                                                  Determination of residual stresses by X-ray diffraction-
            75.  Wolff S, Lee T, Faierson E, et al., 2016, Anisotropic properties
               of directed energy deposition (DED)-processed Ti-6Al-4V.   issue 2. In: A National Measurement Good Practice Guide.
               J Manuf Process, 24: 397–405.                      United Kingdom: National Physical Laboratory.
                                                                  https://doi.org/10.1063/1.3525214
               https://doi.org/10.1016/j.jmapro.2016.06.020
                                                               86.  Luo Q, Yang S, 2017, Uncertainty of the X-ray diffraction
            76.  Qiu C, Adkins NJ, Attallah MM, 2013, Microstructure and   2
               tensile properties of selectively laser-melted and of HIPed   (XRD) sin  Ψ technique in measuring residual stresses of
               laser-melted Ti-6Al-4V. Mater Sci Eng A, 578: 230–239.  physical vapor  deposition (PVD)  hard coatings.  Coatings,
                                                                  7: 128.
               https://doi.org/10.1016/j.msea.2013.04.099
                                                                  https://doi.org/10.3390/coatings7080128
            77.  Bordin A, Bruschi S, Ghiotti A, et al., 2015, Analysis of tool
               wear in cryogenic machining of additive manufactured   87.  Priddy MW, Paulson NH, Kalidindi SR, et al., 2017, Strategies
               Ti6Al4V alloy. Wear, 328–329: 89–99.               for rapid parametric assessment of microstructure-sensitive
                                                                  fatigue for HCP polycrystals. Int J Fatigue, 104: 231–242.
               https://doi.org/10.1016/j.wear.2015.01.030
                                                                  https://doi.org/10.1016/j.ijfatigue.2017.07.015
            78.  Shunmugavel M, Polishetty A, Goldberg M,  et al., 2017,
               A  comparative  study  of mechanical  properties  and   88.  Bieler TR, Semiatin SL, 2002, The origins of heterogeneous
                                                                  deformation during primary hot working of Ti-6Al-4V. Int J
               machinability of wrought and additive manufactured
               (selective laser melting) titanium alloy-Ti-6Al-4V.  Rapid   Plast, 18: 1165–1189.
               Prototype J, 23: 1051–1056.                        https://doi.org/10.1016/S0749-6419(01)00057-2
               https://doi.org/10.1108/RPJ-08-2015-0105        89.  Hémery S, Villechaise P, 2018, Investigation of size effects in


            Volume 2 Issue 3 (2023)                         18                      https://doi.org/10.36922/msam.0999
   105   106   107   108   109   110   111   112   113   114   115