Page 107 - MSAM-2-3
P. 107

Materials Science in Additive Manufacturing                        Validation of a novel ML model for AM-PSP



               https://doi.org/10.1016/j.jmatprotec.2011.01.018  16.  Saboori A, Gallo D, Biamino S, et al., 2017, An overview
            6.   Kruth JP, Leu MC, Nakagawa T, 1998, Progress in   of additive manufacturing of titanium components by
               additive manufacturing and rapid prototyping. Ann CIRP,   directed energy deposition: Microstructure and mechanical
               47: 525–540.                                       properties. Appl Sci 7: 883.
               https://doi.org/10.1016/S0007-8506(07)63240-5      https://doi.org/10.3390/APP7090883
            7.   Gong X, Zeng D, Groeneveld-Meijer W,  et  al., 2022,   17.  Bordin A, Sartori S, Bruschi S,  et al., 2017, Experimental
               Additive manufacturing: A  machine learning model of   investigation on the feasibility of dry and cryogenic
               process-structure-property linkages for machining behavior   machining as sustainable strategies when turning Ti6Al4V
               of Ti-6Al-4V. Mater Sci Addit Manuf, 1: 6.         produced by Additive Manufacturing.  J  Clean Prod,
                                                                  142: 4142–4151.
               https://doi.org/10.18063/msam.v1i1.6
                                                                  https://doi.org/10.1016/J.JCLEPRO.2016.09.209
            8.   Liu Q, Wu H, Paul MJ,  et al., 2020, Machine-learning
               assisted laser powder bed fusion process optimization for   18.  Ding R, Guo ZX, Wilson A, 2002, Microstructural evolution
               AlSi10Mg: New microstructure description indices and   of a Ti-6Al-4V alloy during thermomechanical processing.
               fracture mechanisms. Acta Mater, 201: 316–328.     Mater Sci Eng A, 327: 233–245.
               https://doi.org/10.1016/J.ACTAMAT.2020.10.010      https://doi.org/10.1016/S0921-5093(01)01531-3
            9.   Wang C, Chandra S, Huang S,  et al., 2023, Unraveling   19.  Baufeld B, Van der Biest O, Gault R, 2010, Additive
               process-microstructure-property correlations in powder-  manufacturing of Ti–6Al–4V components by shaped metal
               bed fusion additive manufacturing through information-  deposition: Microstructure and mechanical properties.
               rich  surface  features  with deep  learning.  J  Mater Process   Mater Des, 31: S106–S111.
               Technol, 311: 117804.                              https://doi.org/10.1016/J.MATDES.2009.11.032
               https://doi.org/10.1016/J.JMATPROTEC.2022.117804  20.  Anwar S, Ahmed N, Abdo BM, et al., 2018, Electron beam
            10.  Goh GD, Huang X, Huang S, et al., 2023, Data imputation   melting of gamma titanium aluminide and investigating the
               strategies for process optimization of  laser powder bed   effect of EBM layer orientation on milling performance. Int
               fusion of Ti6Al4V using machine learning. Mater Sci Addit   J Adv Manuf Technol, 96: 3093–3107.
               Manuf, 2: 50.
                                                                  https://doi.org/10.1007/s00170-018-1802-7
               https://doi.org/10.36922/msam.50
                                                               21.  Vayre B, Vignat F, Villeneuve F, 2013, Identification on
            11.  Mondal B, Mukherjee T, DebRoy T, 2022, Crack free metal   some design key parameters for additive manufacturing:
               printing using physics informed machine learning.  Acta   Application on electron beam melting.  Proc CIRP,
               Mater, 226: 117612.                                7: 264–269.
               https://doi.org/10.1016/J.ACTAMAT.2021.117612      https://doi.org/10.1016/j.procir.2013.05.045
            12.  Galati M, Iuliano L, 2018, A literature review of powder-  22.  Murr LE, Johnson WL, 2017, 3D metal droplet
               based electron beam melting focusing on numerical   printing  development  and  advanced  materials  additive
               simulations. Addit Manuf, 19: 1–20.                manufacturing. J Mat Res Technol, 6: 77–89.
               https://doi.org/10.1016/J.ADDMA.2017.11.001        https://doi.org/10.1016/j.jmrt.2016.11.002
            13.  Biamino  S,  Penna  A,  Ackelid  U,  et al.,  2011,  Electron   23.  Antonysamy AA, Meyer J, Prangnell PB, 2013, Effect of build
               beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure   geometry on the β-grain structure and texture in additive
               and mechanical properties investigation.  Intermetallics   manufacture of Ti6Al4V by selective electron beam melting.
               (Barking), 19: 776–781.                            Mater Charact, 84: 153–168.
               https://doi.org/10.1016/J.INTERMET.2010.11.017     https://doi.org/10.1016/J.MATCHAR.2013.07.012
            14.  Vayre B, Vignat F, Villeneuve F, 2012, Metallic additive   24.  Al-Bermani SS, Blackmore ML, Zhang W, et al., 2010, The
               manufacturing: State-of-the-art review and prospects. Mech   origin of microstructural diversity, texture, and mechanical
               Ind, 13: 89–96.                                    properties in electron beam melted Ti-6Al-4V. Metall Mater
               https://doi.org/10.1051/MECA/2012003               Trans A Phys Metall Mater Sci, 41: 3422–3434.
            15.  Bhavar V, Kattire P, Patil V, et al., 2018, A review on powder      https://doi.org/10.1007/s11661-010-0397-x
               bed fusion technology of metal additive manufacturing. In:   25.  Murr LE, Gaytan SM, Medina F, et al., 2010, Characterization
               Additive Manufacturing Handbook. United States: CRC   of Ti-6Al-4V open cellular foams fabricated by additive
               Press. p. 251–253.                                 manufacturing using electron beam melting. Mater Sci Eng
               https://doi.org/10.1201/9781315119106-15           A, 527: 1861–1868.


            Volume 2 Issue 3 (2023)                         15                      https://doi.org/10.36922/msam.0999
   102   103   104   105   106   107   108   109   110   111   112