Page 107 - MSAM-2-3
P. 107
Materials Science in Additive Manufacturing Validation of a novel ML model for AM-PSP
https://doi.org/10.1016/j.jmatprotec.2011.01.018 16. Saboori A, Gallo D, Biamino S, et al., 2017, An overview
6. Kruth JP, Leu MC, Nakagawa T, 1998, Progress in of additive manufacturing of titanium components by
additive manufacturing and rapid prototyping. Ann CIRP, directed energy deposition: Microstructure and mechanical
47: 525–540. properties. Appl Sci 7: 883.
https://doi.org/10.1016/S0007-8506(07)63240-5 https://doi.org/10.3390/APP7090883
7. Gong X, Zeng D, Groeneveld-Meijer W, et al., 2022, 17. Bordin A, Sartori S, Bruschi S, et al., 2017, Experimental
Additive manufacturing: A machine learning model of investigation on the feasibility of dry and cryogenic
process-structure-property linkages for machining behavior machining as sustainable strategies when turning Ti6Al4V
of Ti-6Al-4V. Mater Sci Addit Manuf, 1: 6. produced by Additive Manufacturing. J Clean Prod,
142: 4142–4151.
https://doi.org/10.18063/msam.v1i1.6
https://doi.org/10.1016/J.JCLEPRO.2016.09.209
8. Liu Q, Wu H, Paul MJ, et al., 2020, Machine-learning
assisted laser powder bed fusion process optimization for 18. Ding R, Guo ZX, Wilson A, 2002, Microstructural evolution
AlSi10Mg: New microstructure description indices and of a Ti-6Al-4V alloy during thermomechanical processing.
fracture mechanisms. Acta Mater, 201: 316–328. Mater Sci Eng A, 327: 233–245.
https://doi.org/10.1016/J.ACTAMAT.2020.10.010 https://doi.org/10.1016/S0921-5093(01)01531-3
9. Wang C, Chandra S, Huang S, et al., 2023, Unraveling 19. Baufeld B, Van der Biest O, Gault R, 2010, Additive
process-microstructure-property correlations in powder- manufacturing of Ti–6Al–4V components by shaped metal
bed fusion additive manufacturing through information- deposition: Microstructure and mechanical properties.
rich surface features with deep learning. J Mater Process Mater Des, 31: S106–S111.
Technol, 311: 117804. https://doi.org/10.1016/J.MATDES.2009.11.032
https://doi.org/10.1016/J.JMATPROTEC.2022.117804 20. Anwar S, Ahmed N, Abdo BM, et al., 2018, Electron beam
10. Goh GD, Huang X, Huang S, et al., 2023, Data imputation melting of gamma titanium aluminide and investigating the
strategies for process optimization of laser powder bed effect of EBM layer orientation on milling performance. Int
fusion of Ti6Al4V using machine learning. Mater Sci Addit J Adv Manuf Technol, 96: 3093–3107.
Manuf, 2: 50.
https://doi.org/10.1007/s00170-018-1802-7
https://doi.org/10.36922/msam.50
21. Vayre B, Vignat F, Villeneuve F, 2013, Identification on
11. Mondal B, Mukherjee T, DebRoy T, 2022, Crack free metal some design key parameters for additive manufacturing:
printing using physics informed machine learning. Acta Application on electron beam melting. Proc CIRP,
Mater, 226: 117612. 7: 264–269.
https://doi.org/10.1016/J.ACTAMAT.2021.117612 https://doi.org/10.1016/j.procir.2013.05.045
12. Galati M, Iuliano L, 2018, A literature review of powder- 22. Murr LE, Johnson WL, 2017, 3D metal droplet
based electron beam melting focusing on numerical printing development and advanced materials additive
simulations. Addit Manuf, 19: 1–20. manufacturing. J Mat Res Technol, 6: 77–89.
https://doi.org/10.1016/J.ADDMA.2017.11.001 https://doi.org/10.1016/j.jmrt.2016.11.002
13. Biamino S, Penna A, Ackelid U, et al., 2011, Electron 23. Antonysamy AA, Meyer J, Prangnell PB, 2013, Effect of build
beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure geometry on the β-grain structure and texture in additive
and mechanical properties investigation. Intermetallics manufacture of Ti6Al4V by selective electron beam melting.
(Barking), 19: 776–781. Mater Charact, 84: 153–168.
https://doi.org/10.1016/J.INTERMET.2010.11.017 https://doi.org/10.1016/J.MATCHAR.2013.07.012
14. Vayre B, Vignat F, Villeneuve F, 2012, Metallic additive 24. Al-Bermani SS, Blackmore ML, Zhang W, et al., 2010, The
manufacturing: State-of-the-art review and prospects. Mech origin of microstructural diversity, texture, and mechanical
Ind, 13: 89–96. properties in electron beam melted Ti-6Al-4V. Metall Mater
https://doi.org/10.1051/MECA/2012003 Trans A Phys Metall Mater Sci, 41: 3422–3434.
15. Bhavar V, Kattire P, Patil V, et al., 2018, A review on powder https://doi.org/10.1007/s11661-010-0397-x
bed fusion technology of metal additive manufacturing. In: 25. Murr LE, Gaytan SM, Medina F, et al., 2010, Characterization
Additive Manufacturing Handbook. United States: CRC of Ti-6Al-4V open cellular foams fabricated by additive
Press. p. 251–253. manufacturing using electron beam melting. Mater Sci Eng
https://doi.org/10.1201/9781315119106-15 A, 527: 1861–1868.
Volume 2 Issue 3 (2023) 15 https://doi.org/10.36922/msam.0999

