Page 57 - MSAM-2-4
P. 57

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



            Ethics approval and consent to participate            https://doi.org/10.3390/s20051333

            Not applicable.                                    11.  Im J, Trindade GF, Quach TT, et al., 2022, Functionalized
                                                                  gold nanoparticles with a cohesion enhancer for robust
            Consent for publication                               flexible electrodes. ACS Appl Nano Mater, 5:6708–6716.

            Not applicable.                                       https://doi.org/10.1021/acsanm.2c00742
                                                               12.  Lin Z, Jiang T, Shang J, 2022, The emerging technology of
            Availability of data                                  biohybrid micro-robots: A review. Biodes Manuf, 5:107–132.

            Not applicable.                                       https://doi.org/10.1007/s42242-021-00135-6
            References                                         13.  Adewole DO, Struzyna LA, Burrell JC,  et al., 2021,
                                                                  Development of optically controlled “living electrodes” with
            1.   Metzger SL, Littlejohn KT, Silva AB, et al., 2023, A high-  long-projecting axon tracts for a synaptic brain-machine
               performance  neuroprosthesis  for  speech  decoding  and   interface. Sci Adv, 7: eaay5347.
               avatar control. Nature, 620:1037–1046.
                                                                  https://doi.org/10.1126/sciadv.aay5347
               https://doi.org/10.1038/s41586-023-06443-4
                                                               14.  Steinmetz NA, Aydin C, Lebedeva A, et al., 2021, Neuropixels
            2.   Alagapan S, Choi KS, Heisig S,  et  al., 2023, Cingulate   2.0: A miniaturized high-density probe for stable, long-term
               dynamics track depression recovery with deep brain   brain recordings. Science, 372: eabf4588.
               stimulation. Nature, 622:130–138.
                                                                  https://doi.org/10.1126/science.abf4588
               https://doi.org/10.1038/s41586-023-06541-3
                                                               15.  Guo H, Wei Q, Wu Y, et al., 2023, Enhanced nitrate removal
            3.   Jang J, Kim J, Shin H, et al., 2021, Smart contact lens and   from groundwater using a conductive spacer in flow-
               transparent heat patch for remote monitoring and therapy of   electrode capacitive deionization. Chin Chem Lett, 109325.
               chronic ocular surface inflammation using mobiles. Sci Adv,      https://doi.org/10.1016/j.cclet.2023.109325
               7: eabf7194.
                                                               16.  Zhao ET, Hull JM, Mintz Hemed N, et al., 2023, A CMOS-
               https://doi.org/10.1126/sciadv.abf7194
                                                                  based highly scalable flexible neural electrode interface. Sci
            4.   Lee GH, Kang H, Chung JW,  et al., 2022, Stretchable   Adv, 9: eadf9524.
               PPG sensor with light polarization for physical activity-     https://doi.org/10.1126/sciadv.adf9524
               permissible monitoring. Sci Adv, 8: eabm3622.
                                                               17.  Wang Z, Bai H, Yu W,  et al., 2022, Flexible bioelectronic
               https://doi.org/10.1126/sciadv.abm3622
                                                                  device fabricated by conductive polymer-based living
            5.   Li J, Liu Y, Yuan L, et al., 2022, A tissue-like neurotransmitter   material. Sci Adv, 8: eabo1458.
               sensor for the brain and gut. Nature, 606:94–101.
                                                                  https://doi.org/10.1126/sciadv.abo1458
               https://doi.org/10.1038/s41586-022-04615-2
                                                               18.  Larson NM, Mueller J, Chortos A, et al., 2023, Rotational
            6.   Yang Q, Yang S, Qiu P, et al., 2022, Flexible thermoelectrics   multimaterial printing of filaments with subvoxel control.
               based on ductile semiconductors. Science, 377:854–858.  Nature, 613:682–688.
               https://doi.org/10.1126/science.abq0682            https://doi.org/10.1038/s41586-022-05490-7
            7.   Hu H, Huang H, Li M,  et al., 2023, A wearable cardiac   19.  Zeng C, Faaborg MW, Sherif A,  et al., 2022, 3D-printed
               ultrasound imager. Nature, 613:667–675.            machines that manipulate microscopic objects using
                                                                  capillary forces. Nature, 611:68–73.
               https://doi.org/10.1038/s41586-022-05498-z
                                                                  https://doi.org/10.1038/s41586-022-05234-7
            8.   Flesher SN, Downey JE, Weiss JM,  et al., 2021, A brain-
               computer interface that evokes tactile sensations improves   20.  Sanders SN, Schloemer TH, Gangishetty MK, et al., 2022,
               robotic arm control. Science, 372:831–836.         Triplet fusion upconversion nanocapsules for volumetric 3D
                                                                  printing. Nature, 604:474–478.
               https://doi.org/10.1126/science.abd0380
                                                                  https://doi.org/10.1038/s41586-022-04485-8
            9.   Pearre BW, Michas C, Tsang JM, et al., 2019, Fast micron-
               scale 3D printing with a resonant-scanning two-photon   21.  Regehly M, Garmshausen Y, Reuter M,  et al., 2020,
               microscope. Addit Manuf, 30:100887.                Xolography for linear volumetric 3D printing.  Nature,
                                                                  588:620–624.
               https://doi.org/10.1016/j.addma.2019.100887
                                                                  https://doi.org/10.1038/s41586-020-3029-7
            10.  Trotter M, Juric D, Bagherian Z, et al., 2020, Inkjet-printing
               of nanoparticle gold and silver ink on cyclic olefin copolymer   22.  Schmidt C, 2021, The rise of the assembloid. Nature, 597:
               for DNA-sensing applications. Sensors, 20:1333.    S22–S23.


            Volume 2 Issue 4 (2023)                         12                      https://doi.org/10.36922/msam.2084
   52   53   54   55   56   57   58   59   60   61   62