Page 57 - MSAM-2-4
P. 57
Materials Science in Additive Manufacturing Materials for 3D-printed electrodes
Ethics approval and consent to participate https://doi.org/10.3390/s20051333
Not applicable. 11. Im J, Trindade GF, Quach TT, et al., 2022, Functionalized
gold nanoparticles with a cohesion enhancer for robust
Consent for publication flexible electrodes. ACS Appl Nano Mater, 5:6708–6716.
Not applicable. https://doi.org/10.1021/acsanm.2c00742
12. Lin Z, Jiang T, Shang J, 2022, The emerging technology of
Availability of data biohybrid micro-robots: A review. Biodes Manuf, 5:107–132.
Not applicable. https://doi.org/10.1007/s42242-021-00135-6
References 13. Adewole DO, Struzyna LA, Burrell JC, et al., 2021,
Development of optically controlled “living electrodes” with
1. Metzger SL, Littlejohn KT, Silva AB, et al., 2023, A high- long-projecting axon tracts for a synaptic brain-machine
performance neuroprosthesis for speech decoding and interface. Sci Adv, 7: eaay5347.
avatar control. Nature, 620:1037–1046.
https://doi.org/10.1126/sciadv.aay5347
https://doi.org/10.1038/s41586-023-06443-4
14. Steinmetz NA, Aydin C, Lebedeva A, et al., 2021, Neuropixels
2. Alagapan S, Choi KS, Heisig S, et al., 2023, Cingulate 2.0: A miniaturized high-density probe for stable, long-term
dynamics track depression recovery with deep brain brain recordings. Science, 372: eabf4588.
stimulation. Nature, 622:130–138.
https://doi.org/10.1126/science.abf4588
https://doi.org/10.1038/s41586-023-06541-3
15. Guo H, Wei Q, Wu Y, et al., 2023, Enhanced nitrate removal
3. Jang J, Kim J, Shin H, et al., 2021, Smart contact lens and from groundwater using a conductive spacer in flow-
transparent heat patch for remote monitoring and therapy of electrode capacitive deionization. Chin Chem Lett, 109325.
chronic ocular surface inflammation using mobiles. Sci Adv, https://doi.org/10.1016/j.cclet.2023.109325
7: eabf7194.
16. Zhao ET, Hull JM, Mintz Hemed N, et al., 2023, A CMOS-
https://doi.org/10.1126/sciadv.abf7194
based highly scalable flexible neural electrode interface. Sci
4. Lee GH, Kang H, Chung JW, et al., 2022, Stretchable Adv, 9: eadf9524.
PPG sensor with light polarization for physical activity- https://doi.org/10.1126/sciadv.adf9524
permissible monitoring. Sci Adv, 8: eabm3622.
17. Wang Z, Bai H, Yu W, et al., 2022, Flexible bioelectronic
https://doi.org/10.1126/sciadv.abm3622
device fabricated by conductive polymer-based living
5. Li J, Liu Y, Yuan L, et al., 2022, A tissue-like neurotransmitter material. Sci Adv, 8: eabo1458.
sensor for the brain and gut. Nature, 606:94–101.
https://doi.org/10.1126/sciadv.abo1458
https://doi.org/10.1038/s41586-022-04615-2
18. Larson NM, Mueller J, Chortos A, et al., 2023, Rotational
6. Yang Q, Yang S, Qiu P, et al., 2022, Flexible thermoelectrics multimaterial printing of filaments with subvoxel control.
based on ductile semiconductors. Science, 377:854–858. Nature, 613:682–688.
https://doi.org/10.1126/science.abq0682 https://doi.org/10.1038/s41586-022-05490-7
7. Hu H, Huang H, Li M, et al., 2023, A wearable cardiac 19. Zeng C, Faaborg MW, Sherif A, et al., 2022, 3D-printed
ultrasound imager. Nature, 613:667–675. machines that manipulate microscopic objects using
capillary forces. Nature, 611:68–73.
https://doi.org/10.1038/s41586-022-05498-z
https://doi.org/10.1038/s41586-022-05234-7
8. Flesher SN, Downey JE, Weiss JM, et al., 2021, A brain-
computer interface that evokes tactile sensations improves 20. Sanders SN, Schloemer TH, Gangishetty MK, et al., 2022,
robotic arm control. Science, 372:831–836. Triplet fusion upconversion nanocapsules for volumetric 3D
printing. Nature, 604:474–478.
https://doi.org/10.1126/science.abd0380
https://doi.org/10.1038/s41586-022-04485-8
9. Pearre BW, Michas C, Tsang JM, et al., 2019, Fast micron-
scale 3D printing with a resonant-scanning two-photon 21. Regehly M, Garmshausen Y, Reuter M, et al., 2020,
microscope. Addit Manuf, 30:100887. Xolography for linear volumetric 3D printing. Nature,
588:620–624.
https://doi.org/10.1016/j.addma.2019.100887
https://doi.org/10.1038/s41586-020-3029-7
10. Trotter M, Juric D, Bagherian Z, et al., 2020, Inkjet-printing
of nanoparticle gold and silver ink on cyclic olefin copolymer 22. Schmidt C, 2021, The rise of the assembloid. Nature, 597:
for DNA-sensing applications. Sensors, 20:1333. S22–S23.
Volume 2 Issue 4 (2023) 12 https://doi.org/10.36922/msam.2084

