Page 58 - MSAM-2-4
P. 58

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



               https://doi.org/10.1038/d41586-021-02628-x         https://doi.org/10.1038/srep42233
            23.  Lawlor KT, Vanslambrouck JM, Higgins JW,  et  al., 2021,   34.  Parra-Cabrera C, Achille C, Kuhn S, et al., 2018, 3D printing
               Cellular  extrusion  bioprinting  improves  kidney  organoid   in chemical engineering and catalytic technology: Structured
               reproducibility and conformation. Nat Mater, 20:260–271.  catalysts, mixers and reactors. Chem Soc Rev, 47:209–230.
               https://doi.org/10.1038/s41563-020-00853-9         https://doi.org/10.1039/C7CS00631D
            24.  Yi HG, Jeong YH, Kim Y, et al., 2019, A bioprinted human-  35.  Browne MP, Redondo E, Pumera M, 2020, 3D printing
               glioblastoma-on-a-chip for the identification of patient-  for electrochemical energy applications.  Chem Rev,
               specific responses to chemoradiotherapy. Nat Biomed Eng,   120:2783–2810.
               3:509–519.                                         https://doi.org/10.1021/acs.chemrev.9b00783
               https://doi.org/10.1038/s41551-019-0363-x       36.  Tanzi  MC,  Farè  S,  Candiani  G,  2019,  Manufacturing

            25.  Wang J, Lu T, Yang M, et al., 2019, Hydrogel 3D printing   technologies. In: Tanzi MC, Farè S, Candiani G, editors.
               with the capacitor edge effect. Sci Adv, 5: eaau8769.  Foundations of Biomaterials Engineering. Ch. 3. Cambridge:
                                                                  Academic Press. p. 137–196.
               https://doi.org/10.1126/sciadv.aau8769
                                                                  https://doi.org/10.1016/B978-0-08-101034-1.00003-7
            26.  Browne MP, Mills A, 2018, Determining the importance of
               the electrode support and fabrication method during the   37.  He Q, Wang Z, Wang Y,  et al., 2021, Electrospun liquid
               initial screening process of an active catalyst for the oxygen   crystal elastomer microfiber actuator. Sci Robot, 6: eabi9704.
               evolution reaction. J Mater Chem A, 6:14162–14169.     https://doi.org/10.1126/scirobotics.abi9704
               https://doi.org/10.1039/C8TA02908C              38.  Cao F, Guo S, Ma H, et al., 2011, Nickel oxide microfibers
                                                                  immobilized onto electrode by electrospinning and
            27.  Benck JD, Pinaud BA, Gorlin Y,  et al., 2014, Substrate
               selection for fundamental studies of electrocatalysts and   calcination for nonenzymatic glucose sensor and effect
               photoelectrodes: Inert potential windows in acidic, neutral,   of calcination temperature on the performance.  Biosens
               and basic electrolyte. PLoS One, 9: e107942.       Bioelectron, 26:2756–2760.
                                                                  https://doi.org/10.1016/j.bios.2010.10.013
               https://doi.org/10.1371/journal.pone.0107942
                                                               39.  Wang X, Xiang H, Song C,  et al., 2020, Highly efficient
            28.  Song Y, Tay RY, Li J,  et  al., 2023, 3D-printed epifluidic
               electronic skin for machine learning-powered multimodal   transparent air filter prepared by collecting-electrode-
                                                                  free bipolar electrospinning apparatus.  J  Hazard Mater,
               health surveillance. Sci Adv, 9: eadi6492.
                                                                  385:121535.
               https://doi.org/10.1126/sciadv.adi6492             https://doi.org/10.1016/j.jhazmat.2019.121535
            29.  Zeng L, Ling S, Du D, et al., 2023, Direct ink writing 3D   40.  Kim C, An K, Kang M,  et  al., 2022, Facile fabrication of
               printing for high‐performance electrochemical energy   flexible metal grid transparent electrode using inkjet-
               storage devices: A minireview. Adv Sci (Weinh), 10:2303716.
                                                                  printed dot array as sacrificial layer. Sci Rep, 12:1572.
               https://doi.org/10.1002/advs.202303716             https://doi.org/10.1038/s41598-022-05312-w
            30.  Huang H, Liao L, Lin Z, et al., 2023, Direct ink writing of   41.  Wei Z, Chen H, Yan K, et al., 2014. Inkjet printing and instant
               pickering emulsions generates ultralight conducting polymer   chemical transformation of a CH3NH3PbI3/nanocarbon
               foams with hierarchical structure and multifunctionality.   electrode and interface for planar perovskite solar cells.
               Small, 19:2301493.                                 Angew Chem Int Ed Engl, 53:13239–13243.
               https://doi.org/10.1002/smll.202301493             https://doi.org/10.1002/anie.201408638
            31.  Kotlarz M, Ferreira AM, Gentile P,  et al., 2022, Droplet-  42.  Liu Z, Baluchová S, Brocken B, et al., 2023, Inkjet printing-
               based bioprinting enables the fabrication of cell-hydrogel-  manufactured boron-doped diamond chip electrodes
               microfibre  composite  tissue  precursors.  Biodes  Manuf,   for  electrochemical  sensing  purposes.  ACS Appl Mater
               5:512–528.                                         Interfaces, 15:39915–39925.
               https://doi.org/10.1007/s42242-022-00192-5         https://doi.org/10.1021/acsami.3c04824
            32.  Lee J, So H, 2023, 3D-printing-assisted flexible pressure   43.  Yin J, Zhao D, Liu J, 2019, Trends on physical understanding
               sensor with a concentric circle pattern and high sensitivity   of bioink printability. Biodes Manuf, 2:50–54.
               for health monitoring. Microsyst Nanoeng, 9:44.
                                                                  https://doi.org/10.1007/s42242-019-00033-y
               https://doi.org/10.1038/s41378-023-00509-z
                                                               44.  Chen X, Sun M, Jaber F,  et al., 2023, A flexible wearable
            33.  Foster CW, Down MP, Zhang Y,  et al., 2017, 3D printed   self-supporting hybrid supercapacitor device based on
               graphene based energy storage devices. Sci Rep, 7:42233.  hierarchical nickel cobalt sulfide@C electrode.  Sci Rep,


            Volume 2 Issue 4 (2023)                         13                      https://doi.org/10.36922/msam.2084
   53   54   55   56   57   58   59   60   61   62   63