Page 58 - MSAM-2-4
P. 58
Materials Science in Additive Manufacturing Materials for 3D-printed electrodes
https://doi.org/10.1038/d41586-021-02628-x https://doi.org/10.1038/srep42233
23. Lawlor KT, Vanslambrouck JM, Higgins JW, et al., 2021, 34. Parra-Cabrera C, Achille C, Kuhn S, et al., 2018, 3D printing
Cellular extrusion bioprinting improves kidney organoid in chemical engineering and catalytic technology: Structured
reproducibility and conformation. Nat Mater, 20:260–271. catalysts, mixers and reactors. Chem Soc Rev, 47:209–230.
https://doi.org/10.1038/s41563-020-00853-9 https://doi.org/10.1039/C7CS00631D
24. Yi HG, Jeong YH, Kim Y, et al., 2019, A bioprinted human- 35. Browne MP, Redondo E, Pumera M, 2020, 3D printing
glioblastoma-on-a-chip for the identification of patient- for electrochemical energy applications. Chem Rev,
specific responses to chemoradiotherapy. Nat Biomed Eng, 120:2783–2810.
3:509–519. https://doi.org/10.1021/acs.chemrev.9b00783
https://doi.org/10.1038/s41551-019-0363-x 36. Tanzi MC, Farè S, Candiani G, 2019, Manufacturing
25. Wang J, Lu T, Yang M, et al., 2019, Hydrogel 3D printing technologies. In: Tanzi MC, Farè S, Candiani G, editors.
with the capacitor edge effect. Sci Adv, 5: eaau8769. Foundations of Biomaterials Engineering. Ch. 3. Cambridge:
Academic Press. p. 137–196.
https://doi.org/10.1126/sciadv.aau8769
https://doi.org/10.1016/B978-0-08-101034-1.00003-7
26. Browne MP, Mills A, 2018, Determining the importance of
the electrode support and fabrication method during the 37. He Q, Wang Z, Wang Y, et al., 2021, Electrospun liquid
initial screening process of an active catalyst for the oxygen crystal elastomer microfiber actuator. Sci Robot, 6: eabi9704.
evolution reaction. J Mater Chem A, 6:14162–14169. https://doi.org/10.1126/scirobotics.abi9704
https://doi.org/10.1039/C8TA02908C 38. Cao F, Guo S, Ma H, et al., 2011, Nickel oxide microfibers
immobilized onto electrode by electrospinning and
27. Benck JD, Pinaud BA, Gorlin Y, et al., 2014, Substrate
selection for fundamental studies of electrocatalysts and calcination for nonenzymatic glucose sensor and effect
photoelectrodes: Inert potential windows in acidic, neutral, of calcination temperature on the performance. Biosens
and basic electrolyte. PLoS One, 9: e107942. Bioelectron, 26:2756–2760.
https://doi.org/10.1016/j.bios.2010.10.013
https://doi.org/10.1371/journal.pone.0107942
39. Wang X, Xiang H, Song C, et al., 2020, Highly efficient
28. Song Y, Tay RY, Li J, et al., 2023, 3D-printed epifluidic
electronic skin for machine learning-powered multimodal transparent air filter prepared by collecting-electrode-
free bipolar electrospinning apparatus. J Hazard Mater,
health surveillance. Sci Adv, 9: eadi6492.
385:121535.
https://doi.org/10.1126/sciadv.adi6492 https://doi.org/10.1016/j.jhazmat.2019.121535
29. Zeng L, Ling S, Du D, et al., 2023, Direct ink writing 3D 40. Kim C, An K, Kang M, et al., 2022, Facile fabrication of
printing for high‐performance electrochemical energy flexible metal grid transparent electrode using inkjet-
storage devices: A minireview. Adv Sci (Weinh), 10:2303716.
printed dot array as sacrificial layer. Sci Rep, 12:1572.
https://doi.org/10.1002/advs.202303716 https://doi.org/10.1038/s41598-022-05312-w
30. Huang H, Liao L, Lin Z, et al., 2023, Direct ink writing of 41. Wei Z, Chen H, Yan K, et al., 2014. Inkjet printing and instant
pickering emulsions generates ultralight conducting polymer chemical transformation of a CH3NH3PbI3/nanocarbon
foams with hierarchical structure and multifunctionality. electrode and interface for planar perovskite solar cells.
Small, 19:2301493. Angew Chem Int Ed Engl, 53:13239–13243.
https://doi.org/10.1002/smll.202301493 https://doi.org/10.1002/anie.201408638
31. Kotlarz M, Ferreira AM, Gentile P, et al., 2022, Droplet- 42. Liu Z, Baluchová S, Brocken B, et al., 2023, Inkjet printing-
based bioprinting enables the fabrication of cell-hydrogel- manufactured boron-doped diamond chip electrodes
microfibre composite tissue precursors. Biodes Manuf, for electrochemical sensing purposes. ACS Appl Mater
5:512–528. Interfaces, 15:39915–39925.
https://doi.org/10.1007/s42242-022-00192-5 https://doi.org/10.1021/acsami.3c04824
32. Lee J, So H, 2023, 3D-printing-assisted flexible pressure 43. Yin J, Zhao D, Liu J, 2019, Trends on physical understanding
sensor with a concentric circle pattern and high sensitivity of bioink printability. Biodes Manuf, 2:50–54.
for health monitoring. Microsyst Nanoeng, 9:44.
https://doi.org/10.1007/s42242-019-00033-y
https://doi.org/10.1038/s41378-023-00509-z
44. Chen X, Sun M, Jaber F, et al., 2023, A flexible wearable
33. Foster CW, Down MP, Zhang Y, et al., 2017, 3D printed self-supporting hybrid supercapacitor device based on
graphene based energy storage devices. Sci Rep, 7:42233. hierarchical nickel cobalt sulfide@C electrode. Sci Rep,
Volume 2 Issue 4 (2023) 13 https://doi.org/10.36922/msam.2084

