Page 63 - MSAM-2-4
P. 63

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



            133.  Huang J, Yu Z, Wu P, 2023, 3D printing of ionogels with      https://doi.org/10.1002/adma.202008479
                complementary  functionalities  enabled  by  self-regulating   139.  Yao Y, Hui Y, Wang Z, et al., 2023, Granular ionogel particle
                ink. Adv Sci, 10:2302891.
                                                                   inks for 3D printed tough and stretchable ionotronics.
                https://doi.org/10.1002/advs.202302891             Research (Wash D C), 6:0104.
            134.  Wang M, Lai Z, Jin X, et al., 2021, Multifunctional liquid-     https://doi.org/10.34133/research.0104
                free ionic conductive elastomer fabricated by liquid metal   140.  Zhang M, Yu R, Tao X, et al., 2023, Mechanically robust and
                induced polymerization. Adv Funct Mater, 31:2101957.
                                                                   highly conductive ionogels for soft ionotronics. Adv Funct
                https://doi.org/10.1002/adfm.202101957             Mater, 33:2208083.
            135.  Yiming B, Han Y, Han Z, et al., 2021, A mechanically robust      https://doi.org/10.1002/adfm.202208083
                and versatile liquid-free ionic conductive elastomer.  Adv   141.  Xiong  X,  Chen  Y,  Wang  Z,  et al.,  2023,  Polymerizable
                Mater, 33: e2006111.
                                                                   rotaxane hydrogels for three-dimensional printing
                https://doi.org/10.1002/adma.202006111             fabrication of wearable sensors. Nat Commun, 14:1331.
            136.  Cao Y, Tan YJ, Li S, et al., 2019, Self-healing electronic skins      https://doi.org/10.1038/s41467-023-36920-3
                for aquatic environments. Nat Electron, 2:75–82.
                                                               142.  Xiao J,  Gao Y, 2017, The manufacture of  3D printing  of
                https://doi.org/10.1038/s41928-019-0206-5          medical grade TPU. Prog Addit Manuf, 2:117–123.
            137.  Wang M, Zhang P, Shamsi M,  et al., 2022, Tough and      https://doi.org/10.1007/s40964-017-0023-1
                stretchable ionogels by in situ phase separation. Nat Mater,   143.  Hu X, Chen Y, Xu W, et al., 2023, 3D-printed thermoplastic
                21:359–365.
                                                                   polyurethane electrodes for customizable, flexible lithium-
                https://doi.org/10.1038/s41563-022-01195-4         ion batteries with an ultra-long lifetime.  Small, 19:
                                                                   e2301604.
            138.  Yu Z, Wu P, 2021, Underwater communication and optical
                camouflage ionogels. Adv Mater, 33: e2008479.      https://doi.org/10.1002/smll.202301604














































            Volume 2 Issue 4 (2023)                         18                      https://doi.org/10.36922/msam.2084
   58   59   60   61   62   63   64   65   66   67   68