Page 61 - MSAM-2-4
P. 61

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



            89.  Amara U, Rashid S, Mahmood K, et al., 2022, Insight into   100.  Lim T, Kim M, Akbarian A, et al., 2022, Conductive polymer
               prognostics, diagnostics, and management strategies for   enabled biostable liquid metal electrodes for bioelectronic
               SARS CoV-2. RSC Adv, 12:8059–8094.                  applications. Adv Healthc Mater, 11: e2102382.
               https://doi.org/10.1039/D1RA07988C                  https://doi.org/10.1002/adhm.202102382
            90.  Dos Santos CC, Lucena GN, Pinto GC, et al., 2021, Advances   101.  Tseng CP, Liu F, Zhang X, et al., 2022, Solution-deposited
               and current challenges in non-invasive wearable sensors and   and patternable conductive polymer thin-film electrodes
               wearable biosensors-a mini-review.  Med Devices Sens, 4:   for microbial bioelectronics. Adv Mater, 34: e2109442.
               e10130.
                                                                   https://doi.org/10.1002/adma.202109442
               https://doi.org/10.1002/mds3.10130
                                                               102.  Kayser LV, Lipomi DJ, 2019, Stretchable conductive
            91.  Wang  G,  Park  JM,  Kang  T,  et al.,  2023,  Anion  storage  of   polymers and composites based on PEDOT and
               MXenes. Small Methods, 7: e2201440.                 PEDOT:PSS. Adv Mater, 31: e1806133.
               https://doi.org/10.1002/smtd.202201440              https://doi.org/10.1002/adma.201806133
            92.  Elbadawi  M,  Ong  JJ, Pollard TD,  et al.,  2021,  Additive   103.  O’Neill SJ, Huang Z, Ahmed MH,  et al., 2023, Tissue-
               manufacturable materials for electrochemical  biosensor   mimetic  supramolecular  polymer  networks  for
               electrodes. Adv Funct Mater, 31:2006407.            bioelectronics. Adv Mater, 35: e2207634.
               https://doi.org/10.1002/adfm.202006407              https://doi.org/10.1002/adma.202207634
            93.  Chen L, Eriksson A, Weström S, et al., 2022, Ultra-sensitive   104.  Yang  G,  Zhang  YM,  Cai  Y,  et al.,  2020,  Advances  in
               monitoring of leukemia patients using superRCA mutation   nanomaterials for electrochromic devices. Chem Soc Rev,
               detection assays. Nat Commun, 13:4033.              49:8687–8720.
               https://doi.org/10.1038/s41467-022-31397-y          https://doi.org/10.1039/D0CS00317D
            94.  Cui T, Qiao Y, Li D, et al., 2023, Multifunctional, breathable   105.  Li XG, Wang HY, Huang MR, 2007, Synthesis, film-
               MXene-PU mesh electronic skin for wearable intelligent   forming, and electronic properties of o-phenylenediamine
               12-lead ECG monitoring system. Chem Eng J, 455:140690.  copolymers  displaying  an  uncommon  tricolor.
                                                                   Macromolecules, 40:1489–1496.
               https://doi.org/10.1016/j.cej.2022.140690
                                                                   https://doi.org/10.1021/ma062463g
            95.  Li L, Meng J, Bao X,  et al., 2023, Direct-ink-write 3D
               printing of programmable micro-supercapacitors from   106.  Huang X, Chen J, Xie H,  et al., 2022, Inkjet printing of
               MXene-regulating conducting polymer inks.  Adv Energy   2D polyaniline for fabricating flexible and patterned
               Mater, 13:2203683.                                  electrochromic devices. Sci China Mater, 65:2217–2226.
               https://doi.org/10.1002/aenm.202203683              https://doi.org/10.1007/s40843-022-2037-4
            96.  Bubniene US, Ratautaite V, Ramanavicius A,  et al., 2022,   107.  Shirakawa H, 2001, The discovery of polyacetylene film:
               Conducting polymers for the design of tactile sensors.   The dawning of an era of conducting polymers (nobel
               Polymers (Basel), 14:2984.                          lecture). Angew Chem Int Ed Engl, 40:2574–2580.
               https://doi.org/10.3390/polym14152984               https://doi.org/10.1002/1521-3773(20010716)40::14<2574::AID-
                                                                   ANIE2574>3.0.CO;2-N
            97.  Gaikar PS, Kadu KS, Tehare KK,  et  al., 2022, Recent
               developments in polypyrrole/manganese oxide-based   108.  Luppi BT, Muralidharan AV, Ostermann N,  et al., 2022,
               nanocomposites for thin film electrodes in supercapacitors:   Redox-active  heteroatom-functionalized polyacetylenes.
               A minireview. Nanoscale Adv, 4:5245–5252.           Angew Chem Int Ed Engl, 61: e202114586.
               https://doi.org/10.1039/d2na00654e                  https://doi.org/10.1002/anie.202114586
            98.  Chu X, Chen G, Xiao X, et al., 2021, Air-stable conductive   109.  Miao Z, Gonsales SD, Ehm C,  et al., 2021, Cyclic
               polymer ink for printed wearable micro-supercapacitors.   polyacetylene. Nat Chem, 13:792–799.
               Small, 17: e2100956.
                                                                   https://doi.org/10.1038/s41557-021-00713-2
               https://doi.org/10.1002/smll.202100956
                                                               110.  Yang J, Cui N, Han D,  et al., 2022, A simple strategy
            99.  Gonzalez G, Nelson AC, Holman AR,  et al., 2023,   for constructing hierarchical composite electrodes of
                Conductive electrospun  polymer improves  stem  cell-  PPy-posttreated 3D-printed carbon aerogel with ultrahigh
                derived  cardiomyocyte  function  and  maturation.  areal capacitance over 8000 mF cm-2. Adv Mater Technol,
                Biomaterials, 302:122363.                          7:2101325.
               https://doi.org/10.1016/j.biomaterials.2023.122363      https://doi.org/10.1002/admt.202101325



            Volume 2 Issue 4 (2023)                         16                      https://doi.org/10.36922/msam.2084
   56   57   58   59   60   61   62   63   64   65   66