Page 61 - MSAM-2-4
P. 61
Materials Science in Additive Manufacturing Materials for 3D-printed electrodes
89. Amara U, Rashid S, Mahmood K, et al., 2022, Insight into 100. Lim T, Kim M, Akbarian A, et al., 2022, Conductive polymer
prognostics, diagnostics, and management strategies for enabled biostable liquid metal electrodes for bioelectronic
SARS CoV-2. RSC Adv, 12:8059–8094. applications. Adv Healthc Mater, 11: e2102382.
https://doi.org/10.1039/D1RA07988C https://doi.org/10.1002/adhm.202102382
90. Dos Santos CC, Lucena GN, Pinto GC, et al., 2021, Advances 101. Tseng CP, Liu F, Zhang X, et al., 2022, Solution-deposited
and current challenges in non-invasive wearable sensors and and patternable conductive polymer thin-film electrodes
wearable biosensors-a mini-review. Med Devices Sens, 4: for microbial bioelectronics. Adv Mater, 34: e2109442.
e10130.
https://doi.org/10.1002/adma.202109442
https://doi.org/10.1002/mds3.10130
102. Kayser LV, Lipomi DJ, 2019, Stretchable conductive
91. Wang G, Park JM, Kang T, et al., 2023, Anion storage of polymers and composites based on PEDOT and
MXenes. Small Methods, 7: e2201440. PEDOT:PSS. Adv Mater, 31: e1806133.
https://doi.org/10.1002/smtd.202201440 https://doi.org/10.1002/adma.201806133
92. Elbadawi M, Ong JJ, Pollard TD, et al., 2021, Additive 103. O’Neill SJ, Huang Z, Ahmed MH, et al., 2023, Tissue-
manufacturable materials for electrochemical biosensor mimetic supramolecular polymer networks for
electrodes. Adv Funct Mater, 31:2006407. bioelectronics. Adv Mater, 35: e2207634.
https://doi.org/10.1002/adfm.202006407 https://doi.org/10.1002/adma.202207634
93. Chen L, Eriksson A, Weström S, et al., 2022, Ultra-sensitive 104. Yang G, Zhang YM, Cai Y, et al., 2020, Advances in
monitoring of leukemia patients using superRCA mutation nanomaterials for electrochromic devices. Chem Soc Rev,
detection assays. Nat Commun, 13:4033. 49:8687–8720.
https://doi.org/10.1038/s41467-022-31397-y https://doi.org/10.1039/D0CS00317D
94. Cui T, Qiao Y, Li D, et al., 2023, Multifunctional, breathable 105. Li XG, Wang HY, Huang MR, 2007, Synthesis, film-
MXene-PU mesh electronic skin for wearable intelligent forming, and electronic properties of o-phenylenediamine
12-lead ECG monitoring system. Chem Eng J, 455:140690. copolymers displaying an uncommon tricolor.
Macromolecules, 40:1489–1496.
https://doi.org/10.1016/j.cej.2022.140690
https://doi.org/10.1021/ma062463g
95. Li L, Meng J, Bao X, et al., 2023, Direct-ink-write 3D
printing of programmable micro-supercapacitors from 106. Huang X, Chen J, Xie H, et al., 2022, Inkjet printing of
MXene-regulating conducting polymer inks. Adv Energy 2D polyaniline for fabricating flexible and patterned
Mater, 13:2203683. electrochromic devices. Sci China Mater, 65:2217–2226.
https://doi.org/10.1002/aenm.202203683 https://doi.org/10.1007/s40843-022-2037-4
96. Bubniene US, Ratautaite V, Ramanavicius A, et al., 2022, 107. Shirakawa H, 2001, The discovery of polyacetylene film:
Conducting polymers for the design of tactile sensors. The dawning of an era of conducting polymers (nobel
Polymers (Basel), 14:2984. lecture). Angew Chem Int Ed Engl, 40:2574–2580.
https://doi.org/10.3390/polym14152984 https://doi.org/10.1002/1521-3773(20010716)40::14<2574::AID-
ANIE2574>3.0.CO;2-N
97. Gaikar PS, Kadu KS, Tehare KK, et al., 2022, Recent
developments in polypyrrole/manganese oxide-based 108. Luppi BT, Muralidharan AV, Ostermann N, et al., 2022,
nanocomposites for thin film electrodes in supercapacitors: Redox-active heteroatom-functionalized polyacetylenes.
A minireview. Nanoscale Adv, 4:5245–5252. Angew Chem Int Ed Engl, 61: e202114586.
https://doi.org/10.1039/d2na00654e https://doi.org/10.1002/anie.202114586
98. Chu X, Chen G, Xiao X, et al., 2021, Air-stable conductive 109. Miao Z, Gonsales SD, Ehm C, et al., 2021, Cyclic
polymer ink for printed wearable micro-supercapacitors. polyacetylene. Nat Chem, 13:792–799.
Small, 17: e2100956.
https://doi.org/10.1038/s41557-021-00713-2
https://doi.org/10.1002/smll.202100956
110. Yang J, Cui N, Han D, et al., 2022, A simple strategy
99. Gonzalez G, Nelson AC, Holman AR, et al., 2023, for constructing hierarchical composite electrodes of
Conductive electrospun polymer improves stem cell- PPy-posttreated 3D-printed carbon aerogel with ultrahigh
derived cardiomyocyte function and maturation. areal capacitance over 8000 mF cm-2. Adv Mater Technol,
Biomaterials, 302:122363. 7:2101325.
https://doi.org/10.1016/j.biomaterials.2023.122363 https://doi.org/10.1002/admt.202101325
Volume 2 Issue 4 (2023) 16 https://doi.org/10.36922/msam.2084

