Page 62 - MSAM-2-4
P. 62

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



            111.  Li Q, Tang R, Zhou H, et al., 2023, A high-performance   polymers. Nat Commun, 11:1604.
                and  flexible  electrode  film  based  on  bacterial      https://doi.org/10.1038/s41467-020-15316-7
                cellulose/polypyrrole/nitrogen-doped   graphene  for
                supercapacitors. Carbohydr Polym, 311:120754.  122.  Tomaskovic-Crook E, Zhang P, Ahtiainen A, et al., 2019,
                                                                   Human neural tissues from neural stem cells using
                https://doi.org/10.1016/j.carbpol.2023.120754      conductive  biogel and printed polymer microelectrode
            112.  Shi X, Sun L, Li X, et al., 2022, High-performance flexible   arrays for 3D electrical stimulation.  Adv Healthc Mater,
                supercapacitor enabled by polypyrrole-coated NiCoP@  8: e1900425.
                CNT electrode for wearable devices. J Colloid Interface Sci,      https://doi.org/10.1002/adhm.201900425
                606:135–147.
                                                               123.  Kappen J, Skorupa M, Krukiewicz K, 2022, Conducting
                https://doi.org/10.1016/j.jcis.2021.08.016         polymers as versatile tools for the electrochemical detection
            113.  Zotti G, Vercelli B, Berlin A, 2008, Monolayers and   of cancer biomarkers. Biosensors (Basel), 13:31.
                multilayers of conjugated polymers as nanosized electronic      https://doi.org/10.3390/bios13010031
                components. Acc Chem Res, 41:1098–1109.
                                                               124.  Yuk H, Lu B, Zhao X, 2019, Hydrogel bioelectronics. Chem
                https://doi.org/10.1021/ar8000102                  Soc Rev, 48:1642–1667.
            114.  Ren SB, Ma W, Zhang C,  et al., 2020, Exploiting      https://doi.org/10.1039/C8CS00595H
                polythiophenyl-triazine-based  conjugated  microporous
                polymer with superior lithium-storage performance.   125.  Xie X, Xu Z, Yu X, et al., 2023, Liquid-in-liquid printing
                ChemSusChem, 13:2295–2302.                         of 3D and mechanically tunable conductive hydrogels. Nat
                                                                   Commun, 14:4289.
                https://doi.org/10.1002/cssc.202000200
                                                                   https://doi.org/10.1038/s41467-023-40004-7
            115.  Memon  MA,  Bai  W,  Sun  J,  et al.,  2016,  Conjunction  of
                conducting  polymer  nanostructures  with  macroporous   126.  Zhou T, Yuk H, Hu F,  et al., 2023, 3D printable high-
                structured  graphene thin films for high-performance   performance conducting polymer hydrogel for all-hydrogel
                flexible supercapacitors.  ACS Appl Mater Interfaces,   bioelectronic interfaces. Nat Mater, 22:895–902.
                8:11711–11719.                                     https://doi.org/10.1038/s41563-023-01569-2
                https://doi.org/10.1021/acsami.6b01879         127.  Wong J, Gong AT, Defnet PA,  et al., 2019, 3D Printing
            116.  Liu Y, Li J, Song S,  et al., 2020, Morphing electronics   ionogel auxetic frameworks for stretchable sensors.  Adv
                enable neuromodulation in growing tissue. Nat Biotechnol,   Mater Technol, 4:1900452.
                38:1031–1036.                                      https://doi.org/10.1002/admt.201900452
                https://doi.org/10.1038/s41587-020-0495-2      128.  Zhou  LY, Fu  J,  He  Y, 2020,  A  review  of  3D  printing
            117.  Fan X, Nie W, Tsai H, et al., 2019, PEDOT:PSS for flexible   technologies for soft polymer materials. Adv Funct Mater,
                and stretchable electronics: Modifications, strategies, and   30:2000187.
                applications. Adv Sci (Weinh), 6:1900813.          https://doi.org/10.1002/adfm.202000187
                https://doi.org/10.1002/advs.201900813         129.  Cheng J, Wang R, Sun Z,  et al., 2022, Centrifugal
            118.  Lipomi DJ, Vosgueritchian M, Tee BC, et al., 2011, Skin-  multimaterial 3D printing of multifunctional heterogeneous
                like pressure and strain sensors based on transparent elastic   objects. Nat Commun, 13:7931.
                films of carbon nanotubes. Nat Nanotechnol, 6:788–792.     https://doi.org/10.1038/s41467-022-35622-6
                https://doi.org/10.1038/nnano.2011.184         130.  Ma X, Yu J, Hu Y,  et al., 2023, Ionic liquid/poly(ionic
                                                                   liquid)-based electrolytes for lithium batteries. Ind Chem
            119.  Nurazizah ES, Aprilia A, Risdiana R, et al., 2023, Different
                roles between PEDOT:PSS as counter electrode and   Mater, 1:39–59.
                PEDOT:Carrageenan as electrolyte in dye-sensitized solar      https://doi.org/10.1039/D2IM00051B
                cell applications: A systematic literature review. Polymers
                (Basel), 15:2725.                              131.  Fan X, Liu S, Jia Z, et al., 2023, Ionogels: Recent advances
                                                                   in design, material properties and emerging biomedical
                https://doi.org/10.3390/polym15122725              applications. Chem Soc Rev, 52:2497–2527.
            120.  Sun Z, He Y, Xiong B, et al., 2021, Performance-enhancing      https://doi.org/10.1039/D2CS00652A
                approaches for PEDOT:PSS-Si hybrid solar cells.  Angew   132.  Luo Z, Li W, Yan J, et al., 2022, Roles of ionic liquids in
                Chem Int Ed Engl, 60:5036–5055.
                                                                   adjusting nature of ionogels: A  mini review.  Adv Funct
                https://doi.org/10.1002/anie.201910629             Mater, 32:2203988.
            121.  Yuk H, Lu B, Lin S, et al., 2020, 3D printing of conducting      https://doi.org/10.1002/adfm.202203988


            Volume 2 Issue 4 (2023)                         17                      https://doi.org/10.36922/msam.2084
   57   58   59   60   61   62   63   64   65   66   67