Page 60 - MSAM-2-4
P. 60
Materials Science in Additive Manufacturing Materials for 3D-printed electrodes
https://doi.org/10.1038/s41528-022-00184-6 3:1700158.
68. Lee W, Kim H, Kang I, et al., 2022, Universal assembly of https://doi.org/10.1002/admt.201700158
liquid metal particles in polymers enables elastic printed 79. Jia J, Huang G, Deng J, et al., 2019, Skin-inspired flexible and
circuit board. Science, 378:637–641.
high-sensitivity pressure sensors based on rGO films with
https://doi.org/10.1126/science.abo6631 continuous-gradient wrinkles. Nanoscale, 11:4258–4266.
69. An L, Jiang H, de Camargo Branco D, et al., 2022, Self- https://doi.org/10.1039/C8NR08503J
packaged high-resolution liquid metal nano-patterns. 80. Yu R, Xia T, Wu B, et al., 2020, Highly sensitive flexible
Matter, 5:1016–1030.
piezoresistive sensor with 3D conductive network. ACS Appl
https://doi.org/10.1016/j.matt.2022.01.004 Mater Interfaces, 12:35291–35299.
70. Parker CJ, Krishnamurthi V, Zuraiqi K, et al., 2023, Synthesis https://doi.org/10.1021/acsami.0c09552
of planet-like liquid metal nanodroplets with promising 81. Jeong WY, Choi HE, Kim KS. Based Nanomaterials as Drug
properties for catalysis. Adv Funct Mater, 2304248.
Delivery Carriers. SpringerLink. Available from: https://
https://doi.org/10.1002/adfm.202304248 link.springer.com/chapter/10.1007/978-981-16-4923-
3_6#sec7”graphene [Last accessed on 2023 Sep 11].
71. Sheng A, Khuje S, Yu J, et al., 2022, Copper nanoplates for
printing flexible high-temperature conductors. ACS Appl https://doi.org/10.1007/978-981-16-4923-3_6
Nano Mater, 5:4028–4037.
82. Manikandan V, Lee NY, 2023, Reduced graphene
https://doi.org/10.1021/acsanm.2c00019 oxide: Biofabrication and environmental applications.
Chemosphere, 311:136934.
72. Wang F, Gosling JH, Trindade GF, et al., 2021, Inter-flake
quantum transport of electrons and holes in inkjet-printed https://doi.org/10.1016/j.chemosphere.2022.136934
graphene devices. Adv Funct Mater, 31:2007478.
83. Chen Y, Li L, Zhang J, et al., 2023, Tailored ionically
https://doi.org/10.1002/adfm.202007478 conductive graphene oxide-encased metal ions for
ultrasensitive cadaverine sensor. Chin Chem Lett, 109102.
73. E Silva EP, Huang B, Helaehil JV, et al., 2021, In vivo study
of conductive 3D printed PCL/MWCNTs scaffolds with https://doi.org/10.1016/j.cclet.2023.109102
electrical stimulation for bone tissue engineering. Biodes 84. Yang J, Zhang K, Yu J, et al., 2021, Facile fabrication of robust
Manuf, 4:190–202.
and reusable PDMS supported graphene dry electrodes for
https://doi.org/10.1007/s42242-020-00116-1 wearable electrocardiogram monitoring. Adv Mater Technol,
6:2100262.
74. Kanoun O, Bouhamed A, Ramalingame R, et al., 2021,
Review on conductive polymer/CNTs nanocomposites https://doi.org/10.1002/admt.202100262
based flexible and stretchable strain and pressure sensors. 85. Qian C, Xiao T, Chen Y, et al., 2022, 3D printed reduced
Sensors, 21:341.
graphene oxide/elastomer resin composite with structural
https://doi.org/10.3390/s21020341 modulated sensitivity for flexible strain sensor. Adv Eng
Mater, 24:2101068.
75. Shi Z, Meng L, Shi X, et al., 2022, Morphological engineering
of sensing materials for flexible pressure sensors and artificial https://doi.org/10.1002/adem.202101068
intelligence applications. Nanomicro Lett, 14:141.
86. Fang Y, Wang C, Liu Z, et al., 2023, 3D printed conductive
https://doi.org/10.1007/s40820-022-00874-w multiscale nerve guidance conduit with hierarchical fibers
for peripheral nerve regeneration. Adv Sci (Weinh), 10:
76. Sun X, Wang C, Chi C, et al., 2018, A highly-sensitive flexible
tactile sensor array utilizing piezoresistive carbon nanotube- e2205744.
polydimethylsiloxane composite. J Micromech Microeng, https://doi.org/10.1002/advs.202205744
28:105011.
87. Su T, Wang Y, Zhu Q, et al., 2023, Multiple conductive
https://doi.org/10.1088/1361-6439/aaceb9 network for KTi2(PO4)3 anode based on MXene as a binder
for high-performance potassium storage. Chin Chem Lett,
77. Zhao T, Li T, Chen L, et al., 2019, Highly sensitive
flexible piezoresistive pressure sensor developed using 109191.
biomimetically textured porous materials. ACS Appl Mater https://doi.org/10.1016/j.cclet.2023.109191
Interfaces, 11:29466–29473.
88. Wang F, Yang C, Duan C, et al., 2014, An organ-like titanium
https://doi.org/10.1021/acsami.9b09265 carbide material (MXene) with multilayer structure
encapsulating hemoglobin for a mediator-free biosensor.
78. Park SJ, Kim J, Chu M, et al., 2018, Flexible piezoresistive
pressure sensor using wrinkled carbon nanotube thin J Electrochem Soc, 162: B16.
films for human physiological signals. Adv Mater Technol, https://doi.org/10.1149/2.0371501jes
Volume 2 Issue 4 (2023) 15 https://doi.org/10.36922/msam.2084

