Page 60 - MSAM-2-4
P. 60

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



               https://doi.org/10.1038/s41528-022-00184-6         3:1700158.
            68.  Lee W, Kim H, Kang I, et al., 2022, Universal assembly of      https://doi.org/10.1002/admt.201700158
               liquid metal particles in polymers enables elastic printed   79.  Jia J, Huang G, Deng J, et al., 2019, Skin-inspired flexible and
               circuit board. Science, 378:637–641.
                                                                  high-sensitivity pressure sensors based on rGO films with
               https://doi.org/10.1126/science.abo6631            continuous-gradient wrinkles. Nanoscale, 11:4258–4266.
            69.  An L, Jiang H, de Camargo Branco D,  et al., 2022, Self-     https://doi.org/10.1039/C8NR08503J
               packaged high-resolution liquid metal nano-patterns.   80.  Yu R, Xia T, Wu B,  et al., 2020, Highly sensitive flexible
               Matter, 5:1016–1030.
                                                                  piezoresistive sensor with 3D conductive network. ACS Appl
               https://doi.org/10.1016/j.matt.2022.01.004         Mater Interfaces, 12:35291–35299.
            70.  Parker CJ, Krishnamurthi V, Zuraiqi K, et al., 2023, Synthesis      https://doi.org/10.1021/acsami.0c09552
               of planet-like liquid metal nanodroplets with promising   81.  Jeong WY, Choi HE, Kim KS. Based Nanomaterials as Drug
               properties for catalysis. Adv Funct Mater, 2304248.
                                                                  Delivery  Carriers.  SpringerLink.  Available  from:  https://
               https://doi.org/10.1002/adfm.202304248             link.springer.com/chapter/10.1007/978-981-16-4923-
                                                                  3_6#sec7”graphene [Last accessed on 2023 Sep 11].
            71.  Sheng A, Khuje S, Yu J, et al., 2022, Copper nanoplates for
               printing flexible high-temperature conductors.  ACS Appl      https://doi.org/10.1007/978-981-16-4923-3_6
               Nano Mater, 5:4028–4037.
                                                               82.  Manikandan V, Lee NY, 2023, Reduced  graphene
               https://doi.org/10.1021/acsanm.2c00019             oxide: Biofabrication and environmental applications.
                                                                  Chemosphere, 311:136934.
            72.  Wang F, Gosling JH, Trindade GF, et al., 2021, Inter-flake
               quantum transport of electrons and holes in inkjet-printed      https://doi.org/10.1016/j.chemosphere.2022.136934
               graphene devices. Adv Funct Mater, 31:2007478.
                                                               83.  Chen Y, Li L, Zhang J,  et al., 2023, Tailored ionically
               https://doi.org/10.1002/adfm.202007478             conductive  graphene  oxide-encased  metal  ions  for
                                                                  ultrasensitive cadaverine sensor. Chin Chem Lett, 109102.
            73.  E Silva EP, Huang B, Helaehil JV, et al., 2021, In vivo study
               of conductive 3D printed PCL/MWCNTs scaffolds with      https://doi.org/10.1016/j.cclet.2023.109102
               electrical stimulation for bone tissue engineering.  Biodes   84.  Yang J, Zhang K, Yu J, et al., 2021, Facile fabrication of robust
               Manuf, 4:190–202.
                                                                  and reusable PDMS supported graphene dry electrodes for
               https://doi.org/10.1007/s42242-020-00116-1         wearable electrocardiogram monitoring. Adv Mater Technol,
                                                                  6:2100262.
            74.  Kanoun  O,  Bouhamed  A,  Ramalingame  R,  et al.,  2021,
               Review on conductive polymer/CNTs nanocomposites      https://doi.org/10.1002/admt.202100262
               based flexible and stretchable strain and pressure sensors.   85.  Qian C, Xiao T, Chen Y, et al., 2022, 3D printed reduced
               Sensors, 21:341.
                                                                  graphene  oxide/elastomer  resin  composite  with  structural
               https://doi.org/10.3390/s21020341                  modulated sensitivity for flexible strain sensor.  Adv  Eng
                                                                  Mater, 24:2101068.
            75.  Shi Z, Meng L, Shi X, et al., 2022, Morphological engineering
               of sensing materials for flexible pressure sensors and artificial      https://doi.org/10.1002/adem.202101068
               intelligence applications. Nanomicro Lett, 14:141.
                                                               86.  Fang Y, Wang C, Liu Z, et al., 2023, 3D printed conductive
               https://doi.org/10.1007/s40820-022-00874-w         multiscale nerve guidance conduit with hierarchical fibers
                                                                  for peripheral nerve regeneration.  Adv Sci  (Weinh), 10:
            76.  Sun X, Wang C, Chi C, et al., 2018, A highly-sensitive flexible
               tactile sensor array utilizing piezoresistive carbon nanotube-  e2205744.
               polydimethylsiloxane composite.  J  Micromech Microeng,      https://doi.org/10.1002/advs.202205744
               28:105011.
                                                               87.  Su T, Wang Y, Zhu Q,  et al., 2023, Multiple conductive
               https://doi.org/10.1088/1361-6439/aaceb9           network for KTi2(PO4)3 anode based on MXene as a binder
                                                                  for high-performance potassium storage. Chin Chem Lett,
            77.  Zhao T, Li T, Chen L,  et al., 2019, Highly sensitive
               flexible piezoresistive pressure sensor developed using   109191.
               biomimetically textured porous materials. ACS Appl Mater      https://doi.org/10.1016/j.cclet.2023.109191
               Interfaces, 11:29466–29473.
                                                               88.  Wang F, Yang C, Duan C, et al., 2014, An organ-like titanium
               https://doi.org/10.1021/acsami.9b09265             carbide material (MXene) with multilayer structure
                                                                  encapsulating hemoglobin for a mediator-free biosensor.
            78.  Park SJ, Kim J, Chu M, et al., 2018, Flexible piezoresistive
               pressure sensor using wrinkled carbon nanotube thin   J Electrochem Soc, 162: B16.
               films for human physiological signals. Adv Mater Technol,      https://doi.org/10.1149/2.0371501jes


            Volume 2 Issue 4 (2023)                         15                      https://doi.org/10.36922/msam.2084
   55   56   57   58   59   60   61   62   63   64   65