Page 59 - MSAM-2-4
P. 59

Materials Science in Additive Manufacturing                              Materials for 3D-printed electrodes



               13:15555.                                       56.  Kamyshny A, Magdassi S, 2019, Conductive nanomaterials
                                                                  for 2D and 3D printed flexible electronics. Chem Soc Rev,
               https://doi.org/10.1038/s41598-023-42278-9
                                                                  48:1712–1740.
            45.  Xu Y, Lin Z, Wei W, et al., 2022, Recent progress of electrode
               materials for flexible perovskite solar cells. Nanomicro Lett,      https://doi.org/10.1039/c8cs00738a
               14:117.                                         57.  Nayak L, Mohanty S, Nayak SK, et al., 2019, A review on
               https://doi.org/10.1007/s40820-022-00859-9         inkjet printing of nanoparticle inks for flexible electronics.
                                                                  J Mater Chem C, 7:8771–8795.
            46.  Cabrera L, Sadle C, Purcell E, 2019, Neuroethical
               considerations of high-density electrode arrays. Nat Biomed      https://doi.org/10.1039/C9TC01630A
               Eng, 3:586–589.                                 58.  Fernandes IJ, Aroche AF, Schuck A,  et al., 2020, Silver
                                                                  nanoparticle conductive inks: Synthesis, characterization,
               https://doi.org/10.1038/s41551-019-0407-2
                                                                  and fabrication of inkjet-printed flexible electrodes. Sci Rep,
            47.  Bennett C, Álvarez-Ciara A, Franklin M, et al., 2021, The   10:8878.
               complement  cascade  at  the  Utah  microelectrode-tissue
               interface. Biomaterials, 268:120583.               https://doi.org/10.1038/s41598-020-65698-3
               https://doi.org/10.1016/j.biomaterials.2020.120583  59.  Rahman MK, Lee JS, Kwon KS, 2023, Fine conductive
                                                                  line  printing  of  high  viscosity  CuO  ink  using  near  field
            48.  Soscia DA, Lam D, Tooker AC,  et  al., 2020, A flexible   electrospinning (NFES). Sci Rep, 13:17668.
               3-dimensional microelectrode array for  in vitro brain
               models. Lab Chip, 20:901–911.                      https://doi.org/10.1038/s41598-023-45083-6
               https://doi.org/10.1039/C9LC01148J              60.  Han E, Pan Y, Li L, et al., 2023, Bisphenol a detection based
                                                                  on nano gold-doped molecular imprinting electrochemical
            49.  Conway CR, Olin BD, Aaronson ST, et al., 2021, A prospective,   sensor with enhanced sensitivity. Food Chem, 426:136608.
               multi-center randomized, controlled, blinded trial of vagus
               nerve stimulation for difficult to treat depression: A novel      https://doi.org/10.1016/j.foodchem.2023.136608
               design for a novel treatment. Brain Stimul, 14:1666.  61.  Sadeghi  M,  Shabani-Nooshabadi  M,  2022, Use of  a nano-
               https://doi.org/10.1016/j.brs.2021.10.247          porous gold film electrode modified with chitosan/polypyrrole
                                                                  for electrochemical determination of metronidazole in the
            50.  Frederick RA, Meliane IY, Joshi-Imre A,  et al., 2020,   presence of acetaminophen. Chemosphere, 307:135722.
               Activated iridium oxide film (AIROF) electrodes for neural
               tissue stimulation. J Neural Eng, 17:056001.       https://doi.org/10.1016/j.chemosphere.2022.135722
               https://doi.org/10.1088/1741-2552/abb9bf        62.  Tuleushova N, Amanova A, Abdellah I, et al., 2023, Radiolysis-
                                                                  assisted direct growth of gold-based electrocatalysts for
            51.  Musk E, Neuralink, 2019, An integrated brain-machine   glycerol oxidation. Nanomaterials (Basel), 13:1713.
               interface  platform with thousands of channels.  J  Med
               Internet Res, 21: e16194.                          https://doi.org/10.3390/nano13111713
               https://doi.org/10.2196/16194                   63.  Ma B, Xu C, Chi J, et al., 2019, A versatile approach for direct
                                                                  patterning of liquid metal using magnetic field. Adv Funct
            52.  Hui Y, Yao Y, Qian Q, et al., 2022, Three-dimensional printing   Mater, 29:1901370.
               of soft hydrogel electronics. Nat Electron, 5:893–903.
                                                                  https://doi.org/10.1002/adfm.201901370
               https://doi.org/10.1038/s41928-022-00887-8
                                                               64.  Neumann TV, Dickey MD, 2020, Liquid metal direct write
            53.  Ma S, Dahiya AS, Dahiya R, 2023, Out-of-plane electronics   and 3D printing: A review. Adv Mater Technol, 5:2000070.
               on flexible substrates using inorganic nanowires grown on
               high-aspect-ratio printed gold micropillars. Adv Mater, 35:      https://doi.org/10.1002/admt.202000070
               e2210711.                                       65.  Saborio MG, Cai S, Tang J, et al., 2020, Liquid metal droplet
               https://doi.org/10.1002/adma.202210711             and  graphene  co-fillers for electrically conductive flexible
                                                                  composites. Small, 16: e1903753.
            54.  Saleh MS, Ritchie SM, Nicholas MA,  et al., 2022, CMU
               array:  A  3D  nanoprinted,  fully  customizable  high-density      https://doi.org/10.1002/smll.201903753
               microelectrode array platform. Sci Adv, 8: eabj4853.  66.  Dickey MD, 2017, Stretchable and soft electronics using
               https://doi.org/10.1126/sciadv.abj4853             liquid metals. Adv Mater, 29:1606425.
            55.  Brown MA, Zappitelli KM, Singh L, et al., 2023, Direct laser      https://doi.org/10.1002/adma.201606425
               writing of 3D electrodes on flexible substrates. Nat Commun,   67.  Wu Q, Zhu F, Wu Z,  et al., 2022, Suspension printing of
               14:3610.
                                                                  liquid metal in yield-stress fluid for resilient 3D constructs
               https://doi.org/10.1038/s41467-023-39152-7         with electromagnetic functions. Npj Flex Electron, 6:50.


            Volume 2 Issue 4 (2023)                         14                      https://doi.org/10.36922/msam.2084
   54   55   56   57   58   59   60   61   62   63   64