Page 59 - MSAM-2-4
P. 59
Materials Science in Additive Manufacturing Materials for 3D-printed electrodes
13:15555. 56. Kamyshny A, Magdassi S, 2019, Conductive nanomaterials
for 2D and 3D printed flexible electronics. Chem Soc Rev,
https://doi.org/10.1038/s41598-023-42278-9
48:1712–1740.
45. Xu Y, Lin Z, Wei W, et al., 2022, Recent progress of electrode
materials for flexible perovskite solar cells. Nanomicro Lett, https://doi.org/10.1039/c8cs00738a
14:117. 57. Nayak L, Mohanty S, Nayak SK, et al., 2019, A review on
https://doi.org/10.1007/s40820-022-00859-9 inkjet printing of nanoparticle inks for flexible electronics.
J Mater Chem C, 7:8771–8795.
46. Cabrera L, Sadle C, Purcell E, 2019, Neuroethical
considerations of high-density electrode arrays. Nat Biomed https://doi.org/10.1039/C9TC01630A
Eng, 3:586–589. 58. Fernandes IJ, Aroche AF, Schuck A, et al., 2020, Silver
nanoparticle conductive inks: Synthesis, characterization,
https://doi.org/10.1038/s41551-019-0407-2
and fabrication of inkjet-printed flexible electrodes. Sci Rep,
47. Bennett C, Álvarez-Ciara A, Franklin M, et al., 2021, The 10:8878.
complement cascade at the Utah microelectrode-tissue
interface. Biomaterials, 268:120583. https://doi.org/10.1038/s41598-020-65698-3
https://doi.org/10.1016/j.biomaterials.2020.120583 59. Rahman MK, Lee JS, Kwon KS, 2023, Fine conductive
line printing of high viscosity CuO ink using near field
48. Soscia DA, Lam D, Tooker AC, et al., 2020, A flexible electrospinning (NFES). Sci Rep, 13:17668.
3-dimensional microelectrode array for in vitro brain
models. Lab Chip, 20:901–911. https://doi.org/10.1038/s41598-023-45083-6
https://doi.org/10.1039/C9LC01148J 60. Han E, Pan Y, Li L, et al., 2023, Bisphenol a detection based
on nano gold-doped molecular imprinting electrochemical
49. Conway CR, Olin BD, Aaronson ST, et al., 2021, A prospective, sensor with enhanced sensitivity. Food Chem, 426:136608.
multi-center randomized, controlled, blinded trial of vagus
nerve stimulation for difficult to treat depression: A novel https://doi.org/10.1016/j.foodchem.2023.136608
design for a novel treatment. Brain Stimul, 14:1666. 61. Sadeghi M, Shabani-Nooshabadi M, 2022, Use of a nano-
https://doi.org/10.1016/j.brs.2021.10.247 porous gold film electrode modified with chitosan/polypyrrole
for electrochemical determination of metronidazole in the
50. Frederick RA, Meliane IY, Joshi-Imre A, et al., 2020, presence of acetaminophen. Chemosphere, 307:135722.
Activated iridium oxide film (AIROF) electrodes for neural
tissue stimulation. J Neural Eng, 17:056001. https://doi.org/10.1016/j.chemosphere.2022.135722
https://doi.org/10.1088/1741-2552/abb9bf 62. Tuleushova N, Amanova A, Abdellah I, et al., 2023, Radiolysis-
assisted direct growth of gold-based electrocatalysts for
51. Musk E, Neuralink, 2019, An integrated brain-machine glycerol oxidation. Nanomaterials (Basel), 13:1713.
interface platform with thousands of channels. J Med
Internet Res, 21: e16194. https://doi.org/10.3390/nano13111713
https://doi.org/10.2196/16194 63. Ma B, Xu C, Chi J, et al., 2019, A versatile approach for direct
patterning of liquid metal using magnetic field. Adv Funct
52. Hui Y, Yao Y, Qian Q, et al., 2022, Three-dimensional printing Mater, 29:1901370.
of soft hydrogel electronics. Nat Electron, 5:893–903.
https://doi.org/10.1002/adfm.201901370
https://doi.org/10.1038/s41928-022-00887-8
64. Neumann TV, Dickey MD, 2020, Liquid metal direct write
53. Ma S, Dahiya AS, Dahiya R, 2023, Out-of-plane electronics and 3D printing: A review. Adv Mater Technol, 5:2000070.
on flexible substrates using inorganic nanowires grown on
high-aspect-ratio printed gold micropillars. Adv Mater, 35: https://doi.org/10.1002/admt.202000070
e2210711. 65. Saborio MG, Cai S, Tang J, et al., 2020, Liquid metal droplet
https://doi.org/10.1002/adma.202210711 and graphene co-fillers for electrically conductive flexible
composites. Small, 16: e1903753.
54. Saleh MS, Ritchie SM, Nicholas MA, et al., 2022, CMU
array: A 3D nanoprinted, fully customizable high-density https://doi.org/10.1002/smll.201903753
microelectrode array platform. Sci Adv, 8: eabj4853. 66. Dickey MD, 2017, Stretchable and soft electronics using
https://doi.org/10.1126/sciadv.abj4853 liquid metals. Adv Mater, 29:1606425.
55. Brown MA, Zappitelli KM, Singh L, et al., 2023, Direct laser https://doi.org/10.1002/adma.201606425
writing of 3D electrodes on flexible substrates. Nat Commun, 67. Wu Q, Zhu F, Wu Z, et al., 2022, Suspension printing of
14:3610.
liquid metal in yield-stress fluid for resilient 3D constructs
https://doi.org/10.1038/s41467-023-39152-7 with electromagnetic functions. Npj Flex Electron, 6:50.
Volume 2 Issue 4 (2023) 14 https://doi.org/10.36922/msam.2084

