Page 31 - MSAM-3-1
P. 31

Materials Science in Additive Manufacturing                         Preparation and modification of porous Ti



            97.  Montazerian M, Hosseinzadeh F, Migneco C, Fook MVL,   107.  Guo Y, Ren L, Xie K, et al. Functionalized TiCu/Ti-Cu-N-
               Baino F. Bioceramic coatings on metallic implants: An   coated 3D-printed porous Ti6Al4V scaffold promotes bone
               overview. Ceram Int. 2022;48:8987-9005.             regeneration through BMSC recruitment. Adv Mater Interf.
                                                                   2020;7:1901632.
               doi: 10.1016/j.ceramint.2022.02.055
                                                                   doi: 10.1002/admi.201901632
            98.  Wang X, Li Y, Hodgson PD, Wen C. Biomimetic modification
               of porous TiNbZr alloy scaffold for bone tissue engineering.   108.  Zhang Z, Li Y, He P, et al. Nanotube-decorated hierarchical
               Tissue Eng A. 2010;16:309-316.                      tantalum scaffold promoted early osseointegration.
                                                                   Nanomedicine. 2021;35:102390.
               doi: 10.1089/ten.tea.2009.0074
                                                                   doi: 10.1016/j.nano.2021.102390
            99.  Chudinova  E,  Koptyug  A,  Mukhortova  Y,  et al.
               Functionalization of additive-manufactured Ti6Al4V   109.  Shokuhfar T, Hamlekhan A, Chang JY, Choi CK, Sukotjo C,
               scaffolds with poly(allylamine hydrochloride)/poly(styrene   Friedrich C. Biophysical evaluation of cells on nanotubular
               sulfonate) bilayer microcapsule system containing   surfaces: The effects of atomic ordering and chemistry. Int J
               dexamethasone. Mater Chem Phys. 2021;273:125099.    Nanomedicine. 2014;9:3737-3748.
               doi: 10.1016/j.matchemphys.2021.125099              doi: 10.2147/IJN.S67344
            100.  Li L, Li Y, Yang L, et al. Polydopamine coating promotes   110.  Makurat-Kasprolewicz B, Ossowska A. Recent advances
                early osteogenesis in 3D printing porous Ti6Al4V scaffolds.   in electrochemically surface treated titanium and its alloys
                Ann Transl Med. 2019;7:240.                        for biomedical applications: A review of anodic and plasma
                                                                   electrolytic oxidation methods.  Mater Today Commun.
                doi: 10.21037/atm.2019.04.79                       2023;34:105425.
            101.  Jiao Y, Li X, Zhang X,  et al. Silver antibacterial surface      doi: 10.1016/j.mtcomm.2023.105425
                adjusted by  hierarchical structure on 3D  printed  porous
                titanium alloy. Appl Surf Sci. 2023;610:155519.  111.  Liang  CY,  Jiang  XJ,  Ji  RL,  et al.  Preparation  and  surface
                                                                   modification of 3D printed Ti–6Al–4V porous implant.
                doi: 10.1016/j.apsusc.2022.155519                  Rare Met. 2021;40:1164-1172.
            102.  Vignesh R, Sakthinathan G, Velusamy R, Ramakrishna S.      doi: 10.1007/s12598-020-01413-5
                An  in-vitro evaluation study on the effects of surface
                modification via physical vapor deposition on the   112.  Li G, Ma F, Liu P, et al. Review of micro-arc oxidation of
                degradation rates of magnesium-based biomaterials. Surf   titanium alloys: Mechanism, properties and applications.
                                                                   J Alloys Compd. 2023;948:169773.
                Coat Technol. 2021;411:126972.
                                                                   doi: 10.1016/j.jallcom.2023.169773
                doi: 10.1016/j.surfcoat.2021.126972
                                                               113.  Ming X, Wu Y, Zhang Z, Li Y. Micro-arc oxidation in
            103.  Diez-Escudero A, Andersson B, Carlsson E,  et al.   titanium and its alloys: Development and potential of
                3D-printed porous Ti6Al4V alloys with silver coating   implants. Coatings. 2023;13:2064.
                combine osteocompatibility and antimicrobial properties.
                Biomater Adv. 2022;133:112629.                     doi: 10.3390/coatings13122064
                doi: 10.1016/j.msec.2021.112629                114.  Wen X, Liu Y, Xi F, Zhang X, Kang Y. Micro-arc oxidation
                                                                   (MAO) and its potential for improving the performance of
            104.  Wang F, Wang L, Feng Y, et al. Evaluation of an artificial   titanium implants in biomedical applications. Front Bioeng
                vertebral body fabricated by a tantalum-coated porous   Biotechnol. 2023;11:1282590.
                titanium  scaffold for  lumbar vertebral defect repair in
                rabbits. Sci Rep. 2018;8:8927.                     doi: 10.3389/fbioe.2023.1282590
                doi: 10.1038/s41598-018-27182-x                115.  Yan Y, Sun J, Han H, Li D, Cui K. Microstructure and
                                                                   bioactivity of Ca, P and Sr doped TiO2 coating formed on
            105.  MetalsFree Full-Text Electrochemical Surface Treatment   porous titanium by micro-arc oxidation. Surf Coat Technol.
                of a β-titanium Alloy to Realize an Antibacterial Property   2010;205:1702-1713.
                and Bioactivity, (n.d.). Available from: https://www.mdpi.
                com/2075-4701/6/4/76 [Last accessed on 2024 Jan  .     doi: 10.1016/j.surfcoat.2010.09.040
                                                    13
            106.  Vidal  E, Guillem-Marti J, Ginebra MP,  Combes C,   116.  Sun X, Tong S, Yang S, Guo S. The effects of graphene on
                Ruperez  E, Rodriguez D. Multifunctional homogeneous   the biocompatibility of a 3D-printed porous titanium alloy.
                calcium phosphate coatings: Toward antibacterial and   Coatings. 2021;11:1509.
                cell  adhesive  titanium  scaffolds.  Surf  Coat  Technol.      doi: 10.3390/coatings11121509
                2021;405:126557.
                                                               117.  Huang H, Wu Z, Yang Z,  et al. In vitro application of
                doi: 10.1016/j.surfcoat.2020.126557                drug-loaded hydrogel combined with 3D-printed porous


            Volume 3 Issue 1 (2024)                         25                      https://doi.org/10.36922/msam.2753
   26   27   28   29   30   31   32   33   34   35   36