Page 27 - MSAM-3-1
P. 27

Materials Science in Additive Manufacturing                         Preparation and modification of porous Ti



               2023;13:1917.                                      517.
               doi: 10.3390/coatings13111917                      doi: 10.1016/j.wear.2007.04.001

            13.  Asri RIM, Harun WSM, Samykano M, et al. Corrosion and   23.  Bobbert FSL, Lietaert K, Eftekhari AA,  et al. Additively
               surface  modification on  biocompatible metals: A  review.   manufactured metallic porous biomaterials based on
               Mater Sci Eng C Mater Biol Appl. 2017;77:1261-1274.  minimal surfaces: A  unique combination of topological,
                                                                  mechanical, and mass transport properties. Acta Biomater.
               doi: 10.1016/j.msec.2017.04.102
                                                                  2017;53:572-584.
            14.  Ottria L, Lauritano D, Bassi MA, et al. Mechanical, chemical      doi: 10.1016/j.actbio.2017.02.024
               and biological aspects of titanium and titanium alloys in
               implant dentistry. J Biol Regul Homeost Agents. 2018;32:81-  24.  Lv Y, Liu G, Wang B,  et al. Pore strategy design of a
               90.                                                novel NiTi-Nb biomedical porous scaffold based on a
                                                                  triply periodic minimal surface.  Front Bioeng Biotechnol.
            15.  Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced   2022;10:910475.
               surface modification for 3D-printed titanium alloy implant
               interface functionalization.  Front Bioeng Biotechnol.      doi: 10.3389/fbioe.2022.910475
               2022;10:850110.                                 25.  Zhang T, Wang W, Liu J, Wang L, Tang Y, Wang K. A review
               doi: 10.3389/fbioe.2022.850110                     on magnesium alloys for biomedical applications.  Front
                                                                  Bioeng Biotechnol. 2022;10:953344.
            16.  Raman RKS, Wen C, Loeffler JF. Human Body-fluid-assisted
               fracture of zinc alloys as biodegradable temporary implants:      doi: 10.3389/fbioe.2022.953344
               Challenges, research needs and way forward.  Materials.   26.  Sidhu SS, Singh H, Gepreel MAH. A review on alloy design,
               2023;16:4984.                                      biological response, and strengthening of  β-titanium
                                                                  alloys as biomaterials.  Mater Sci Eng C Mater Biol Appl.
               doi: 10.3390/ma16144984
                                                                  2021;121:111661.
            17.  Dziaduszewska M, Zieliński A. Structural and material
               determinants influencing the behavior of porous Ti and      doi: 10.1016/j.msec.2020.111661
               its alloys made by additive manufacturing techniques for   27.  Zhang T, Fan Q, Ma X, et al. Effect of laser remelting on
               biomedical applications. Materials. 2021;14:712.   microstructural evolution and mechanical properties of
                                                                  Ti-35Nb-2Ta-3Zr alloy. Mater Lett. 2019;253:310-313.
               doi: 10.3390/ma14040712
                                                                  doi: 10.1016/j.matlet.2019.06.105
            18.  Khodaei M, Fathi M, Meratian M, Savabi O. The effect of
               porosity on the mechanical properties of porous titanium   28.  Wang L, Lin Z, Wang X, et al. Effect of aging treatment on
               scaffolds: Comparative study on experimental and analytical   microstructure and mechanical properties of Ti27Nb2Ta3Zr
               values. Mater Res Express. 2018;5:055401.          β titanium alloy for implant applications.  Mater  Trans.
                                                                  2014;55:141-146.
               doi: 10.1088/2053-1591/aabfa2
                                                                  doi: 10.2320/matertrans.M2013187
            19.  Xiong YZ, Gao RN, Zhang H, Dong LL, Li JT, Li X. Rationally
               designed functionally graded porous Ti6Al4V scaffolds with   29.  Yuan L, Ding S, Wen C. Additive manufacturing technology
               high strength and toughness built via selective laser melting   for  porous  metal  implant  applications  and  triple  minimal
               for load-bearing orthopedic applications.  J  Mech Behav   surface structures: A review. Bioactive Mater. 2019;4:56-70.
               Biomed Mater. 2020;104:103673.                     doi: 10.1016/j.bioactmat.2018.12.003
               doi: 10.1016/j.jmbbm.2020.103673                30.  Zhao F, Wang J, Guo H, Liu S, He W. The effects of surface
            20.  Lv Y, Wang B, Liu G,  et al. Metal material, properties   properties of nanostructured bone repair materials on their
               and design methods of porous biomedical scaffolds for   performances. J Nanomater. 2015;2015:893545.
               additive manufacturing: A review. Front Bioeng Biotechnol.      doi: 10.1155/2015/893545
               2021;9:641130.
                                                               31.  Cao S, Ma N, Zhang Y, Bo R, Lu Y. Fabrication, mechanical
               doi: 10.3389/fbioe.2021.641130                     properties, and multifunctionalities of particle reinforced
            21.  Wei G, Tan M, Attarilar S,  et  al. An overview of surface   foams: A review. Thin Walled Struct. 2023;186:110678.
               modification, a way toward fabrication of nascent biomedical      doi: 10.1016/j.tws.2023.110678
               Ti–6Al–4V alloys. J Mater Res Technol. 2023;24:5896-5921.
                                                               32.  Rodriguez-Contreras A, Punset M, Calero JA, Javier Gil F,
               doi: 10.1016/j.jmrt.2023.04.046                    Ruperez E, Maria Manero J. Powder metallurgy with space
            22.  Oesterle W, Klaffke D, Griepentrog M, Gross U, Kranz I,   holder for porous titanium implants: A review. J Mater Sci
               Knabe C. Potential of wear resistant coatings on Ti-6Al-4V   Technol. 2021;76:129-149.
               for artificial hip joint bearing surfaces. Wear. 2008;264:505-     doi: 10.1016/j.jmst.2020.11.005


            Volume 3 Issue 1 (2024)                         21                      https://doi.org/10.36922/msam.2753
   22   23   24   25   26   27   28   29   30   31   32