Page 32 - MSAM-3-1
P. 32

Materials Science in Additive Manufacturing                         Preparation and modification of porous Ti



                scaffolds. Biomed Mater. 2022;17:065019.       123.  Croes M, Bakhshandeh S, Van Hengel IAJ,  et al.
                                                                   Antibacterial and immunogenic behavior of silver coatings
                doi: 10.1088/1748-605X/ac9943
                                                                   on additively manufactured porous titanium.  Acta
            118.  Chen H, Feng R, Xia T, et al. Progress in surface modification   Biomater. 2018;81:315-327.
                of titanium implants by hydrogel coatings. Gels. 2023;9:423.
                                                                   doi: 10.1016/j.actbio.2018.09.051
                doi: 10.3390/gels9050423
                                                               124.  Wei X, Chen Q, Bu L, et al. Improved muscle regeneration
            119.  Bai H, Cui Y, Wang C, et al. 3D printed porous biomimetic   into a joint prosthesis with mechano-growth factor loaded
                composition sustained release zoledronate  to promote   within mesoporous silica combined with carbon nanotubes
                osteointegration of osteoporotic defects. Mater Des.   on a porous titanium alloy. ACS Nano. 2022;16:14344-14361.
                2020;189:108513.
                                                                   doi: 10.1021/acsnano.2c04591
                doi: 10.1016/j.matdes.2020.108513
                                                               125.  Jiang P, Zhang Y, Shi B, et al. Advanced surface engineering
            120.  Yu L, Wu Y, Liu J, et al. 3D Culture of bone marrow-derived   of titanium materials for biomedical applications: From
                mesenchymal stem cells (BMSCs) could improve bone   static modification to dynamic responsive regulation.
                regeneration in 3D-printed porous Ti6Al4V scaffolds. Stem   Bioact Mater. 2023;27:15-57.
                Cells Int. 2018;2018:2074021.
                                                                   doi: 10.1016/j.bioactmat.2023.03.006
                doi: 10.1155/2018/2074021
                                                               126.  Wu H, Dong H, Tang Z,  et al. Electrical stimulation of
            121.  Qiao S, Sheng Q, Li Z, et al. 3D-printed Ti6Al4V scaffolds   piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes
                coated with freeze-dried platelet-rich plasma as bioactive   anti-inflammatory polarization of macrophages and bone
                interface for enhancing osseointegration in osteoporosis.   repair via MAPK/JNK inhibition and OXPHOS activation.
                Mater Des. 2020;194:108825.                        Biomaterials. 2023;293:121990.
                doi: 10.1016/j.matdes.2020.108825                  doi: 10.1016/j.biomaterials.2022.121990
            122.  Kumar A, Nune KC, Misra RDK. Biological functionality   127.  Lascano  S,  Chávez-Vásconez  R,  Muñoz-Rojas  D,  et al.
                and mechanistic contribution of extracellular  matrix‐  Graphene-coated Ti-Nb-Ta-Mn foams: A  promising
                ornamented three dimensional Ti‐6Al‐4V mesh scaffolds.   approach towards a suitable biomaterial for bone
                J Biomed Mater Res. 2016;104:2751-2763.            replacement. Surf Coat Technol. 2020;401:126250.
                doi: 10.1002/jbm.a.35809                           doi: 10.1016/j.surfcoat.2020.126250








































            Volume 3 Issue 1 (2024)                         26                      https://doi.org/10.36922/msam.2753
   27   28   29   30   31   32   33   34   35   36   37