Page 29 - MSAM-3-1
P. 29
Materials Science in Additive Manufacturing Preparation and modification of porous Ti
doi: 10.1016/j.proeng.2012.03.025 Mater. 2021;204:116522.
54. Biasetto L, De Moraes EG, Colombo P, Bonollo F. Ovalbumin doi: 10.1016/j.actamat.2020.116522
as foaming agent for Ti6Al4V foams produced by gelcasting. 65. Zadpoor AA. Additively manufactured porous metallic
J Alloys Compd. 2016;687:839-844.
biomaterials. J Mater Chem B. 2019;7:4088-4117.
doi: 10.1016/j.jallcom.2016.06.218 doi: 10.1039/C9TB00420C
55. Liu P, Tan Q, Wu L, He G. Compressive and pseudo-elastic 66. Bikas H, Stavropoulos P, Chryssolouris G. Additive
hysteresis behavior of entangled titanium wire materials. manufacturing methods and modelling approaches:
Mater Sci Eng A. 2010;527:3301-3309. A critical review. Int J Adv Manuf Technol. 2016;83:389-405.
doi: 10.1016/j.msea.2010.02.071 doi: 10.1007/s00170-015-7576-2
56. Wang L, Xie L, Zhang LC, et al. Microstructure evolution and 67. Slámečka K, Kashimbetova A, Pokluda J, et al. Fatigue
superelasticity of layer-like NiTiNb porous metal prepared behaviour of titanium scaffolds with hierarchical porosity
by eutectic reaction. Acta Mater. 2018;143:214-226. produced by material extrusion additive manufacturing.
doi: 10.1016/j.actamat.2017.10.021 Mater Des. 2023;225:111453.
57. Li F, Li J, Xu G, Liu G, Kou H, Zhou L. Fabrication, pore 68. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron‐beam
structure and compressive behavior of anisotropic porous powder‐bed additive manufacturing of metallic implants:
titanium for human trabecular bone implant applications. A review on processes, materials and designs. J Orthop Res.
J Mech Behav Biomed Mater. 2015;46:104-114. 2016;34:369-385.
doi: 10.1016/j.jmbbm.2015.02.023 doi: 10.1002/jor.23075
58. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui 69. Qu H. Additive manufacturing for bone tissue engineering
D. Additive manufacturing (3D printing): A review of scaffolds. Mater Today Commun. 2020;24:101024.
materials, methods, applications and challenges. Compos B doi: 10.1016/j.mtcomm.2020.101024
Eng. 2018;143:172-196.
70. Hara D, Nakashima Y, Sato T, et al. Bone bonding strength
doi: 10.1016/j.compositesb.2018.02.012 of diamond-structured porous titanium-alloy implants
59. Agarwal R, García AJ. Biomaterial strategies for engineering manufactured using the electron beam-melting technique.
implants for enhanced osseointegration and bone repair. Mater Sci Eng C Mater Biol Appl. 2016;59:1047-1052.
Adv Drug Deliv Rev. 2015;94:53-62. doi: 10.1016/j.msec.2015.11.025
doi: 10.1016/j.addr.2015.03.013 71. Sing SL, Yeong WY, Wiria FE. Selective laser melting of
60. Structural Characteristics and Mechanical Behavior of titanium alloy with 50 wt% tantalum: Microstructure and
Selective Laser Sintered Porous Ti-6Mo Alloy for Biomedical mechanical properties. J Alloys Compd. 2016;660:461-470.
Applications-All Databases, (n.d.). Available from: http:// doi: 10.1016/j.jallcom.2015.11.141
webvpn.swu.tsgvip.top/https/537775736869676568616f78
756565212abc50b4738e8888c9482a5750aefc5fc6e25954c3 72. Ataee A, Li Y, Wen C. A comparative study on the
8c5bb888/wos/alldb/full-record/WOS:000379195400020 nanoindentation behavior, wear resistance and in vitro
[Last accessed on 2024 Mar 03]. biocompatibility of SLM manufactured CP–Ti and EBM
manufactured Ti64 gyroid scaffolds. Acta Biomater.
61. Davoodi E, Montazerian H, Mirhakimi AS, et al. Additively 2019;97:587-596.
manufactured metallic biomaterials. Bioactive Mater.
2022;15:214-249. doi: 10.1016/j.actbio.2019.08.008
73. Gómez S, Vlad MD, López J, Fernández E. Design and
doi: 10.1016/j.bioactmat.2021.12.027
properties of 3D scaffolds for bone tissue engineering. Acta
62. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue Biomater. 2016;42:341-350.
engineering scaffolds. Bioactive Mater. 2020;5:82-91.
doi: 10.1016/j.actbio.2016.06.032
doi: 10.1016/j.bioactmat.2020.01.004
74. Zieliński TG, Opiela KC, Pawłowski P, et al. Reproducibility
63. Huang S, Kumar P, Yeong WY, Narayan RL, Ramamurty of sound-absorbing periodic porous materials using additive
U. Fracture behavior of laser powder bed fusion fabricated manufacturing technologies: Round robin study. Addit
Ti41Nb via in-situ alloying. Acta Mater. 2022;225:117593. Manufact. 2020;36:101564.
doi: 10.1016/j.actamat.2021.117593 doi: 10.1016/j.addma.2020.101564
64. Huang S, Narayan RL, Tan JHK, Sing SL, Yeong WL. 75. Kou XY, Tan ST. A simple and effective geometric
Resolving the porosity-unmelted inclusion dilemma during representation for irregular porous structure modeling.
in-situ alloying of Ti34Nb via laser powder bed fusion. Acta Comput Aided Des. 2010;42:930-941.
Volume 3 Issue 1 (2024) 23 https://doi.org/10.36922/msam.2753

