Page 29 - MSAM-3-1
P. 29

Materials Science in Additive Manufacturing                         Preparation and modification of porous Ti



               doi: 10.1016/j.proeng.2012.03.025                  Mater. 2021;204:116522.
            54.  Biasetto L, De Moraes EG, Colombo P, Bonollo F. Ovalbumin      doi: 10.1016/j.actamat.2020.116522
               as foaming agent for Ti6Al4V foams produced by gelcasting.   65.  Zadpoor AA. Additively manufactured porous metallic
               J Alloys Compd. 2016;687:839-844.
                                                                  biomaterials. J Mater Chem B. 2019;7:4088-4117.
               doi: 10.1016/j.jallcom.2016.06.218                 doi: 10.1039/C9TB00420C
            55.  Liu P, Tan Q, Wu L, He G. Compressive and pseudo-elastic   66.  Bikas H, Stavropoulos P, Chryssolouris G. Additive
               hysteresis behavior of entangled titanium wire materials.   manufacturing methods and modelling approaches:
               Mater Sci Eng A. 2010;527:3301-3309.               A critical review. Int J Adv Manuf Technol. 2016;83:389-405.
               doi: 10.1016/j.msea.2010.02.071                    doi: 10.1007/s00170-015-7576-2
            56.  Wang L, Xie L, Zhang LC, et al. Microstructure evolution and   67.  Slámečka K, Kashimbetova A, Pokluda J,  et al. Fatigue
               superelasticity of layer-like NiTiNb porous metal prepared   behaviour of titanium scaffolds with hierarchical porosity
               by eutectic reaction. Acta Mater. 2018;143:214-226.  produced by material extrusion additive manufacturing.
               doi: 10.1016/j.actamat.2017.10.021                 Mater Des. 2023;225:111453.
            57.  Li F, Li J, Xu G, Liu G, Kou H, Zhou L. Fabrication, pore   68.  Sing SL, An J, Yeong WY, Wiria FE. Laser and electron‐beam
               structure and compressive behavior of anisotropic porous   powder‐bed additive manufacturing of metallic implants:
               titanium for human trabecular bone implant applications.   A review on processes, materials and designs. J Orthop Res.
               J Mech Behav Biomed Mater. 2015;46:104-114.        2016;34:369-385.
               doi: 10.1016/j.jmbbm.2015.02.023                   doi: 10.1002/jor.23075
            58.  Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui   69.  Qu H. Additive manufacturing for bone tissue engineering
               D. Additive manufacturing (3D printing): A  review of   scaffolds. Mater Today Commun. 2020;24:101024.
               materials, methods, applications and challenges. Compos B      doi: 10.1016/j.mtcomm.2020.101024
               Eng. 2018;143:172-196.
                                                               70.  Hara D, Nakashima Y, Sato T, et al. Bone bonding strength
               doi: 10.1016/j.compositesb.2018.02.012             of diamond-structured porous titanium-alloy implants
            59.  Agarwal R, García AJ. Biomaterial strategies for engineering   manufactured using the electron beam-melting technique.
               implants for enhanced osseointegration and bone repair.   Mater Sci Eng C Mater Biol Appl. 2016;59:1047-1052.
               Adv Drug Deliv Rev. 2015;94:53-62.                 doi: 10.1016/j.msec.2015.11.025
               doi: 10.1016/j.addr.2015.03.013                 71.  Sing SL, Yeong WY, Wiria FE. Selective laser melting of
            60.  Structural Characteristics and Mechanical Behavior of   titanium alloy with 50 wt% tantalum: Microstructure and
               Selective Laser Sintered Porous Ti-6Mo Alloy for Biomedical   mechanical properties. J Alloys Compd. 2016;660:461-470.
               Applications-All Databases, (n.d.).  Available from:  http://     doi: 10.1016/j.jallcom.2015.11.141
               webvpn.swu.tsgvip.top/https/537775736869676568616f78
               756565212abc50b4738e8888c9482a5750aefc5fc6e25954c3   72.  Ataee A, Li Y, Wen C. A  comparative study on the
               8c5bb888/wos/alldb/full-record/WOS:000379195400020   nanoindentation behavior,  wear  resistance  and  in vitro
               [Last accessed on 2024 Mar 03].                    biocompatibility of SLM manufactured CP–Ti and EBM
                                                                  manufactured Ti64 gyroid scaffolds.  Acta  Biomater.
            61.  Davoodi E, Montazerian H, Mirhakimi AS, et al. Additively   2019;97:587-596.
               manufactured metallic biomaterials.  Bioactive Mater.
               2022;15:214-249.                                   doi: 10.1016/j.actbio.2019.08.008
                                                               73.  Gómez S, Vlad MD, López J, Fernández E. Design and
               doi: 10.1016/j.bioactmat.2021.12.027
                                                                  properties of 3D scaffolds for bone tissue engineering. Acta
            62.  Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue   Biomater. 2016;42:341-350.
               engineering scaffolds. Bioactive Mater. 2020;5:82-91.
                                                                  doi: 10.1016/j.actbio.2016.06.032
               doi: 10.1016/j.bioactmat.2020.01.004
                                                               74.  Zieliński TG, Opiela KC, Pawłowski P, et al. Reproducibility
            63.  Huang S, Kumar P, Yeong WY, Narayan RL, Ramamurty   of sound-absorbing periodic porous materials using additive
               U. Fracture behavior of laser powder bed fusion fabricated   manufacturing technologies: Round robin study.  Addit
               Ti41Nb via in-situ alloying. Acta Mater. 2022;225:117593.  Manufact. 2020;36:101564.
               doi: 10.1016/j.actamat.2021.117593                 doi: 10.1016/j.addma.2020.101564
            64.  Huang S, Narayan RL, Tan JHK, Sing SL, Yeong WL.   75.  Kou XY, Tan ST. A  simple and effective geometric
               Resolving the porosity-unmelted inclusion dilemma during   representation  for  irregular  porous  structure  modeling.
               in-situ alloying of Ti34Nb via laser powder bed fusion. Acta   Comput Aided Des. 2010;42:930-941.


            Volume 3 Issue 1 (2024)                         23                      https://doi.org/10.36922/msam.2753
   24   25   26   27   28   29   30   31   32   33   34