Page 28 - MSAM-3-1
P. 28

Materials Science in Additive Manufacturing                         Preparation and modification of porous Ti



            33.  Ryan G, Pandit A, Apatsidis DP. Fabrication methods   pore expansion technique. IOP Conf Ser Mater Sci Eng.
               of porous metals for use in orthopaedic applications.   2018;403:012096.
               Biomaterials. 2006;27:2651-2670.
                                                                  doi: 10.1088/1757-899X/403/1/012096
               doi: 10.1016/j.biomaterials.2005.12.002
                                                               44.  Chen YJ, Feng B, Zhu YP, Weng J, Wang JX, Lu X.
            34.  Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N.   Fabrication of porous titanium implants with biomechanical
               Additive manufacturing of titanium alloys for orthopedic   compatibility. Mater Lett. 2009;63:2659-2661.
               applications: A materials science viewpoint. Adv Eng Mater.      doi: 10.1016/j.matlet.2009.09.029
               2018;20:1800172.
                                                               45.  Rao X, Chu CL, Zheng YY. Phase composition,
               doi: 10.1002/adem.201800172
                                                                  microstructure, and mechanical properties of porous
            35.  Babaie E, Bhaduri SB. Fabrication aspects of porous   Ti–Nb–Zr alloys prepared by a two-step foaming
               biomaterials in orthopedic applications: A  review.  ACS   powder metallurgy method.  J  Mech  Behav  Biomed  Mater.
               Biomater Sci Eng. 2018;4:1-39.                     2014;34:27-36.
               doi: 10.1021/acsbiomaterials.7b00615               doi: 10.1016/j.jmbbm.2014.02.001
            36.  Luo SD, Qian M. Microwave processing of titanium and   46.  Ahn MK, Jo IH, Koh YH, Kim HE. Production of highly
               titanium alloys for structural, biomedical and shape memory   porous titanium (Ti) scaffolds by vacuum-assisted foaming
               applications: Current status and challenges.  Mater Manuf   of titanium hydride (TiH2) suspension. Mater Lett.
               Process. 2018;33:35-49.                            2014;120:228-31.
               doi: 10.1080/10426914.2016.1257800                 doi: 10.1016/j.matlet.2014.01.065
            37.  Oh IH, Nomura N, Masahashi N, Hanada S. Mechanical   47.  Gonzalez, Z, Molero, E, Sanchez, J, Ferrari, B. Processing
               properties of porous titanium compacts prepared by powder   of titanium porous bodies by foaming of gelled aqueous
               sintering. Scripta Mater. 2003;49:1197-1202.       suspensions of powders. Preprints 2021, 2021020099.
               doi: 10.1016/j.scriptamat.2003.08.018              doi: 10.20944/preprints202102.0099.v1
            38.  Torres Y, Lascano S, Bris J, Pavón J, Rodriguez JA.   48.  Haghjoo R, Sadrnezhaad SK, Hassanzadeh-Nemati N.
               Development of porous titanium for biomedical applications:   Synthesis, characterization, and biological studies of sintered
               A  comparison between loose sintering and space-holder   porous titanium with three different pore morphologies. Int
               techniques. Mater Sci Eng C Mater Biol Appl. 2014;37:148-  J Mater Res. 2023;114:43-53.
               155.
                                                                  doi: 10.1515/ijmr-2022-0053
               doi: 10.1016/j.msec.2013.11.036
                                                               49.  Luo H, Zhao J, Du H, Yin W, Qu Y. Effect of Mg powder’s
            39.  Annur  D,  Kartika  I,  Sudiro  T,  Supriadi  S,  Suharno  B.   particle size on structure and mechanical properties of Ti
               Microstructure, mechanical properties, and in vitro studies   foam synthesized by space holder technique.  Materials.
               of porous titanium obtained by spark plasma sintering.   2022;15:8863.
               Trans Indian Inst Metals. 2022;75:3067-3076.
                                                                  doi: 10.3390/ma15248863
               doi: 10.1007/s12666-022-02680-9
                                                               50.  Yang G, Xu B, Lei X, et al. Preparation of porous titanium
            40.  Saadati A, Aghajani H. Fabrication of porous NiTi   by direct in-situ reduction of titanium sesquioxide. Vacuum.
               biomedical alloy by SHS method. J Mater Sci Mater Med.   2018;157:453-457.
               2019;30:92.
                                                                  doi: 10.1016/j.vacuum.2018.09.021
               doi: 10.1007/s10856-019-6296-9
                                                               51.  Chen Z, Wu C, Liu X, Shen T, Zhang L. Fabricating
            41.  Han Q, Wang C, Chen H, Zhao X, Wang J. Porous tantalum   honeycomb titanium by freeze casting and anodizing for
               and titanium in orthopedics: A  review.  ACS Biomater Sci   biomedical applications. Adv Eng Mater. 2022;24:2101088.
               Eng. 2019;5:5798-5824.
                                                                  doi: 10.1002/adem.202101088
               doi: 10.1021/acsbiomaterials.9b00493
                                                               52.  Li J, Li Z, Wang Q, et al. Sintered porous Ti6Al4V scaffolds
            42.  Lascano S, Arevalo C, Montealegre-Melendez I, et al. Porous   incorporated with recombinant human bone morphogenetic
               titanium for biomedical applications: Evaluation of the   protein-2 microspheres and thermosensitive hydrogels can
               conventional powder metallurgy frontier and space-holder   enhance bone regeneration. RSC Adv. 2019;9:1541-1550.
               technique. Appl Sci. 2019;9:982.
                                                                  doi: 10.1039/C8RA10200G
               doi: 10.3390/app9050982
                                                               53.  Yang D, Guo Z, Shao H, Liu X, Ji Y. Mechanical properties of
            43.  Nugroho AW, Leadbeater G, Davies IJ. Fabrication and   porous Ti-Mo and Ti-Nb alloys for biomedical application
               characterization of the porous titanium alloy by argon filled   by gelcasting. Procedia Eng.2012;36:160-167.


            Volume 3 Issue 1 (2024)                         22                      https://doi.org/10.36922/msam.2753
   23   24   25   26   27   28   29   30   31   32   33