Page 28 - MSAM-3-1
P. 28
Materials Science in Additive Manufacturing Preparation and modification of porous Ti
33. Ryan G, Pandit A, Apatsidis DP. Fabrication methods pore expansion technique. IOP Conf Ser Mater Sci Eng.
of porous metals for use in orthopaedic applications. 2018;403:012096.
Biomaterials. 2006;27:2651-2670.
doi: 10.1088/1757-899X/403/1/012096
doi: 10.1016/j.biomaterials.2005.12.002
44. Chen YJ, Feng B, Zhu YP, Weng J, Wang JX, Lu X.
34. Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N. Fabrication of porous titanium implants with biomechanical
Additive manufacturing of titanium alloys for orthopedic compatibility. Mater Lett. 2009;63:2659-2661.
applications: A materials science viewpoint. Adv Eng Mater. doi: 10.1016/j.matlet.2009.09.029
2018;20:1800172.
45. Rao X, Chu CL, Zheng YY. Phase composition,
doi: 10.1002/adem.201800172
microstructure, and mechanical properties of porous
35. Babaie E, Bhaduri SB. Fabrication aspects of porous Ti–Nb–Zr alloys prepared by a two-step foaming
biomaterials in orthopedic applications: A review. ACS powder metallurgy method. J Mech Behav Biomed Mater.
Biomater Sci Eng. 2018;4:1-39. 2014;34:27-36.
doi: 10.1021/acsbiomaterials.7b00615 doi: 10.1016/j.jmbbm.2014.02.001
36. Luo SD, Qian M. Microwave processing of titanium and 46. Ahn MK, Jo IH, Koh YH, Kim HE. Production of highly
titanium alloys for structural, biomedical and shape memory porous titanium (Ti) scaffolds by vacuum-assisted foaming
applications: Current status and challenges. Mater Manuf of titanium hydride (TiH2) suspension. Mater Lett.
Process. 2018;33:35-49. 2014;120:228-31.
doi: 10.1080/10426914.2016.1257800 doi: 10.1016/j.matlet.2014.01.065
37. Oh IH, Nomura N, Masahashi N, Hanada S. Mechanical 47. Gonzalez, Z, Molero, E, Sanchez, J, Ferrari, B. Processing
properties of porous titanium compacts prepared by powder of titanium porous bodies by foaming of gelled aqueous
sintering. Scripta Mater. 2003;49:1197-1202. suspensions of powders. Preprints 2021, 2021020099.
doi: 10.1016/j.scriptamat.2003.08.018 doi: 10.20944/preprints202102.0099.v1
38. Torres Y, Lascano S, Bris J, Pavón J, Rodriguez JA. 48. Haghjoo R, Sadrnezhaad SK, Hassanzadeh-Nemati N.
Development of porous titanium for biomedical applications: Synthesis, characterization, and biological studies of sintered
A comparison between loose sintering and space-holder porous titanium with three different pore morphologies. Int
techniques. Mater Sci Eng C Mater Biol Appl. 2014;37:148- J Mater Res. 2023;114:43-53.
155.
doi: 10.1515/ijmr-2022-0053
doi: 10.1016/j.msec.2013.11.036
49. Luo H, Zhao J, Du H, Yin W, Qu Y. Effect of Mg powder’s
39. Annur D, Kartika I, Sudiro T, Supriadi S, Suharno B. particle size on structure and mechanical properties of Ti
Microstructure, mechanical properties, and in vitro studies foam synthesized by space holder technique. Materials.
of porous titanium obtained by spark plasma sintering. 2022;15:8863.
Trans Indian Inst Metals. 2022;75:3067-3076.
doi: 10.3390/ma15248863
doi: 10.1007/s12666-022-02680-9
50. Yang G, Xu B, Lei X, et al. Preparation of porous titanium
40. Saadati A, Aghajani H. Fabrication of porous NiTi by direct in-situ reduction of titanium sesquioxide. Vacuum.
biomedical alloy by SHS method. J Mater Sci Mater Med. 2018;157:453-457.
2019;30:92.
doi: 10.1016/j.vacuum.2018.09.021
doi: 10.1007/s10856-019-6296-9
51. Chen Z, Wu C, Liu X, Shen T, Zhang L. Fabricating
41. Han Q, Wang C, Chen H, Zhao X, Wang J. Porous tantalum honeycomb titanium by freeze casting and anodizing for
and titanium in orthopedics: A review. ACS Biomater Sci biomedical applications. Adv Eng Mater. 2022;24:2101088.
Eng. 2019;5:5798-5824.
doi: 10.1002/adem.202101088
doi: 10.1021/acsbiomaterials.9b00493
52. Li J, Li Z, Wang Q, et al. Sintered porous Ti6Al4V scaffolds
42. Lascano S, Arevalo C, Montealegre-Melendez I, et al. Porous incorporated with recombinant human bone morphogenetic
titanium for biomedical applications: Evaluation of the protein-2 microspheres and thermosensitive hydrogels can
conventional powder metallurgy frontier and space-holder enhance bone regeneration. RSC Adv. 2019;9:1541-1550.
technique. Appl Sci. 2019;9:982.
doi: 10.1039/C8RA10200G
doi: 10.3390/app9050982
53. Yang D, Guo Z, Shao H, Liu X, Ji Y. Mechanical properties of
43. Nugroho AW, Leadbeater G, Davies IJ. Fabrication and porous Ti-Mo and Ti-Nb alloys for biomedical application
characterization of the porous titanium alloy by argon filled by gelcasting. Procedia Eng.2012;36:160-167.
Volume 3 Issue 1 (2024) 22 https://doi.org/10.36922/msam.2753

