Page 30 - MSAM-3-1
P. 30

Materials Science in Additive Manufacturing                         Preparation and modification of porous Ti



               doi: 10.1016/j.cad.2010.06.006                     porous titanium products using slip casting. J Mater Process
                                                                  Technol. 2013;213:1440-1446.
            76.  Zhao J, Zhang M, Zhu Y, Li X, Wang L, Hu C. Concurrent
               optimization of additive manufacturing fabricated      doi: 10.1016/j.jmatprotec.2013.03.011
               lattice structures for natural frequencies. Int J Mech Sci.   87.  Liu Y, Jiang G, He G. Enhancement of entangled porous
               2019;163:105153.                                   titanium  by  BisGMA  for  load-bearing  biomedical
               doi: 10.1016/j.ijmecsci.2019.105153                applications. Mater Sci Eng C Mater Biol Appl. 2016;61:37-41.
            77.  Ma S, Song K, Lan J, Ma L. Biological and mechanical      doi: 10.1016/j.msec.2015.12.018
               property analysis for designed heterogeneous porous   88.  Fiocchi J, Tuissi A, Biffi CA. Heat treatment of aluminium
               scaffolds based on the refined TPMS. J Mech Behav Biomed   alloys produced by laser powder bed fusion: A review. Mater
               Mater. 2020;107:103727.                            Des. 2021;204:109651.
               doi: 10.1016/j.jmbbm.2020.103727                   doi: 10.1016/j.matdes.2021.109651
            78.  Lv Y, Wang B, Liu G, et al. Design of bone-like continuous   89.  Chen LY, Liang SX, Liu Y, Zhang LC. Additive manufacturing
               gradient porous scaffold based on triply periodic minimal   of metallic lattice structures: Unconstrained design, accurate
               surfaces. J Mater Res Technol. 2022;21:3650-3665.  fabrication, fascinated performances, and challenges. Mater
               doi: 10.1016/j.jmrt.2022.10.160                    Sci Eng R Rep. 2021;146:100648.
            79.  Lv Y, Guo J, Zhang Q, Wei G, Yu H. Design of low elastic      doi: 10.1016/j.mser.2021.100648
               modulus and high strength TC4 porous scaffolds via new   90.  Zhang LC, Chen LY, Wang L. Surface modification of
               variable gradient strategies. Mater Lett. 2022;325:132616.  titanium and titanium alloys: Technologies, developments,
               doi: 10.1016/j.matlet.2022.132616                  and future interests. Adv Eng Mater. 2020;22:1901258.
                                                                  doi: 10.1002/adem.201901258
            80.  Zhao D, Huang Y, Ao Y, et al. Effect of pore geometry on
               the fatigue properties and cell affinity of porous titanium   91.  Fang Y, Wang Q, Yang Z, et al. An efficient approach to endow
               scaffolds fabricated by selective laser melting. J Mech Behav   TiNbTaZr implant with osteogenic differentiation and
               Biomed Mater. 2018;88:478-487.                     antibacterial activity in vitro. Mater Des. 2022;221:110987.
               doi: 10.1016/j.jmbbm.2018.08.048                   doi: 10.1016/j.matdes.2022.110987
            81.  Novel‐Ink‐Based Direct Ink Writing of Ti6al4v Scaffolds with   92.  Guo Y, Hu B, Tang C, et al. Increased osteoblast function
               Sub‐300 μm Structural Pores for Superior Cell Proliferation   in vitro and  in vivo through surface nanostructuring by
               And Differentiation - Xu - Advanced Healthcare Materials.   ultrasonic shot peening. Int J Nanomed. 2015;10:4593-4603.
               Wiley Online Library, (n.d.). Available from: https://     doi: 10.2147/IJN.S83788
               onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202302396
               [Last accessed on 2024 Jan  .                   93.  Sypniewska J, Szkodo M. Influence of laser modification
                                   13
                                                                  on the surface character of biomaterials: Titanium and its
            82.  Zhao G, Shao X, Zhang Q, et al. Porous bio-high entropy   alloys-a review. Coatings. 2022;12:1371.
               alloy scaffolds fabricated by direct ink writing. J Mater Sci
               Technol. 2023;157:21-29.                           doi: 10.3390/coatings12101371
               doi: 10.1016/j.jmst.2023.02.015                 94.  Surmeneva MA, Khrapov D, Prosolov K,  et al. The
                                                                  influence  of  chemical  etching  on  porous  structure  and
            83.  Li Z, Yang F, Wang H, Li Y, Chen C, Guo Z. Direct ink   mechanical properties of the Ti6AL4V Functionally Graded
               writing of porous Ti6Al4V alloys via UV light curing. Adv   Porous  Scaffolds  fabricated  by  EBM.  Mater Chem Phys.
               Eng Mater. 2022;24:2200176.                        2022;275:125217.
               doi: 10.1002/adem.202200176                        doi: 10.1016/j.matchemphys.2021.125217
            84.  Coffigniez M, Gremillard L, Balvay S, Lachambre J, Adrien   95.  Civantos A, Domínguez C, Pino RJ,  et al. Designing
               J, Boulnat X. Direct-ink writing of strong and biocompatible   bioactive porous titanium interfaces to balance mechanical
               titanium scaffolds with bimodal interconnected porosity.   properties and  in vitro cells behavior towards increased
               Addit Manuf. 2021;39:101859.                       osseointegration. Surf Coat Technol. 2019;368:162-174.
               doi: 10.1016/j.addma.2021.101859                   doi: 10.1016/j.surfcoat.2019.03.001
            85.  Direct ink Writing to Fabricate Porous Acetabular Cups   96.  Wang D, He G, Tian Y, Ren N, Liu W, Zhang X. Dual effects
               from Titanium Alloy. Bio-Design and Manufacturing, (n.d.).   of acid etching on cell responses and mechanical properties
               Available from: https://link.springer.com/article/10.1007/  of porous titanium with controllable open‐porous structure.
               s42242-022-00222-2 [Last accessed on 2024 Jan  .   J Biomed Mater Res. 2020;108:2386-2395.
                                                  13
            86.  Xu Q, Gabbitas B, Matthews S, Zhang D. The development of      doi: 10.1002/jbm.b.34571


            Volume 3 Issue 1 (2024)                         24                      https://doi.org/10.36922/msam.2753
   25   26   27   28   29   30   31   32   33   34   35