Page 111 - MSAM-3-2
P. 111
Materials Science in Additive Manufacturing NiTi lattice: Performance optimization
8. Sefene EM. State-of-the-art of selective laser melting process: 18. Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity
A comprehensive review. J Manuf Syst. 2022;63:250-274. of shape memory alloys - Role of deformation temperatures,
mechanical cycling, stress hysteresis and inhomogeneity of
doi: 10.1016/j.jmsy.2022.04.002
transformation. Acta Mater. 2017;135:158-176.
9. Liu C, Roux LL, Ji Z, Kerfriden P, Lacan F, Bigot S. Machine
learning-enabled feedback loops for metal powder bed doi: 10.1016/j.actamat.2017.06.012
fusion additive manufacturing. Procedia Comput Sci. 19. Zhang K, Kang G, Sun Q. High fatigue life and cooling
2020;176:2586-2595. efficiency of NiTi shape memory alloy under cyclic
doi: 10.1016/j.procs.2020.09.314 compression. Scr Mater. 2019;159:62-67.
10. Han Q, Gu Y, Huang J, et al. Selective laser melting of doi: 10.1016/j.scriptamat.2018.09.012
hastelloy X nanocomposite: Effects of TiC reinforcement 20. Zhao T, Kang G. Experimental study and life prediction on
on crack elimination and strength improvement. Compos B fatigue failure of NiTi shape memory alloy under multi-
Eng. 2020;202:108442. axial one-way shape memory cyclic loadings. Int J Fatigue.
doi: 10.1016/j.compositesb.2020.108442 2022;155:106609.
11. Zhou SY, Su Y, Wang H, Enz J, Ebel T, Yan M. Selective doi: 10.1016/j.ijfatigue.2021.106609
laser melting additive manufacturing of 7xxx series Al-Zn- 21. Jin J, Wu S, Yang L, et al. Ni-Ti multicell interlacing Gyroid
Mg-Cu alloy: Cracking elimination by co-incorporation of lattice structures with ultra-high hyperelastic response
Si and TiB . Addit Manuf. 2020;36:101458. fabricated by laser powder bed fusion. Int J Mach Tools
2
doi: 10.1016/j.addma.2020.101458 Manuf. 2024;195:104099.
12. Hussain S, Alagha AN, Haidemenopoulos GN, Zaki W. doi: 10.1016/j.ijmachtools.2023.104099
Microstructural and surface analysis of NiTi TPMS lattice 22. Song W, Mu K, Feng G, et al. Mechanical properties of 3D
sections fabricated by laser powder bed fusion. J Manuf printed interpenetrating phase composites with TPMS
Process. 2023;102:375-386. architectures. Thin Walled Struct. 2023;193:111210.
doi: 10.1016/j.jmapro.2023.07.055 doi: 10.1016/j.tws.2023.111210
13. Finazzi V, Berti F, Petrini L, Previtali B, Demir AG. Additive 23. Gado MG, Ookawara S. 3D-printed Triply Periodic Minimal
manufacturing and post-processing of superelastic NiTi Surface (TPMS) structures: Towards potential application
micro struts as building blocks for cardiovascular stents. of adsorption-based atmospheric water harvesting. Energy
Addit Manuf. 2023;70:103561. Convers Manag. 2023;297:117729.
doi: 10.1016/j.addma.2023.103561 doi: 10.1016/j.enconman.2023.117729
14. Wang J, Huang B, Gu X, Zhu J, Zhang W. Actuation 24. Yang L, Li Y, Chen Y, Yan C, Liu B, Shi Y. Topologically
performance of machined helical springs from NiTi shape optimized lattice structures with superior fatigue
memory alloy. Int J Mech Sci. 2022;236:107744. performance. Int J Fatigue. 2022;165:107188.
doi: 10.1016/j.ijmecsci.2022.107744 doi: 10.1016/j.ijfatigue.2022.107188
15. Luo J, Xu K, Li C, Li M, Lin Y. The evolution of dynamic 25. Zhang C, Qiao H, Yang L, et al. Vibration characteristics of
recrystallization and recrystallization texture during additive manufactured IWP-type TPMS lattice structures.
isothermal compression of NiTi shape memory alloy. Mater Compos Struct. 2024;327:117642.
Sci Eng A. 2021;820:141424.
doi: 10.1016/j.compstruct.2023.117642
doi: 10.1016/j.msea.2021.141424
26. Fu H, Kaewunruen S. Experimental and DEM investigation
16. Kan Q, Zhang Y, Xu Y, Kang G, Yu C. Tension-compression of axially-loaded behaviours of IWP-based structures. Int J
asymmetric functional degeneration of super-elastic Mech Sci. 2022;235:107738.
NiTi shape memory alloy: Experimental observation
and multiscale constitutive model. Int J Solids Struct. doi: 10.1016/j.ijmecsci.2022.107738
2023;280:112384. 27. Ge J, Yuan B, Chen H, et al. Anisotropy in microstructural
doi: 10.1016/j.ijsolstr.2023.112384 features and tensile performance of laser powder bed fusion
NiTi alloys. J Mater Res Technol. 2023;24:8656-8668.
17. Safdel A, Zaker N, Botton GA, Elbestawi MA. The role of
texture and restoration mechanisms in defining the tension- doi: 10.1016/j.jmrt.2023.05.046
compression asymmetry behavior of aged NiTi alloys 28. Qi Y, Sha P, Yang K, et al. Construction and parameter
fabricated by laser powder bed fusion. Mater Sci Eng A. optimization of LPBF-NiTi alloy bionic superhydrophobic
2023;864:144592.
surface based on laser processing. J Mater Res Technol.
doi: 10.1016/j.msea.2023.144592 2023;24:9462-9475.
Volume 3 Issue 2 (2024) 14 doi: 10.36922/msam.3380

