Page 111 - MSAM-3-2
P. 111

Materials Science in Additive Manufacturing                            NiTi lattice: Performance optimization



            8.   Sefene EM. State-of-the-art of selective laser melting process:   18.  Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity
               A comprehensive review. J Manuf Syst. 2022;63:250-274.  of shape memory alloys - Role of deformation temperatures,
                                                                  mechanical cycling, stress hysteresis and inhomogeneity of
               doi: 10.1016/j.jmsy.2022.04.002
                                                                  transformation. Acta Mater. 2017;135:158-176.
            9.   Liu C, Roux LL, Ji Z, Kerfriden P, Lacan F, Bigot S. Machine
               learning-enabled feedback loops for metal powder bed      doi: 10.1016/j.actamat.2017.06.012
               fusion additive manufacturing.  Procedia Comput Sci.   19.  Zhang K, Kang G, Sun Q. High fatigue life and cooling
               2020;176:2586-2595.                                efficiency of NiTi shape memory alloy under cyclic
               doi: 10.1016/j.procs.2020.09.314                   compression. Scr Mater. 2019;159:62-67.
            10.  Han Q, Gu Y, Huang J,  et al. Selective laser melting of      doi: 10.1016/j.scriptamat.2018.09.012
               hastelloy X nanocomposite: Effects of TiC reinforcement   20.  Zhao T, Kang G. Experimental study and life prediction on
               on crack elimination and strength improvement. Compos B   fatigue failure of NiTi shape memory alloy under multi-
               Eng. 2020;202:108442.                              axial one-way shape memory cyclic loadings. Int J Fatigue.
               doi: 10.1016/j.compositesb.2020.108442             2022;155:106609.
            11.  Zhou SY, Su Y, Wang H, Enz J, Ebel T, Yan M. Selective      doi: 10.1016/j.ijfatigue.2021.106609
               laser melting additive manufacturing of 7xxx series Al-Zn-  21.  Jin J, Wu S, Yang L, et al. Ni-Ti multicell interlacing Gyroid
               Mg-Cu alloy: Cracking elimination by co-incorporation of   lattice structures with ultra-high hyperelastic response
               Si and TiB . Addit Manuf. 2020;36:101458.          fabricated by laser powder bed fusion.  Int J Mach Tools
                       2
               doi: 10.1016/j.addma.2020.101458                   Manuf. 2024;195:104099.
            12.  Hussain S, Alagha AN, Haidemenopoulos GN, Zaki W.      doi: 10.1016/j.ijmachtools.2023.104099
               Microstructural and surface analysis of NiTi TPMS lattice   22.  Song W, Mu K, Feng G, et al. Mechanical properties of 3D
               sections fabricated by laser powder bed fusion.  J  Manuf   printed interpenetrating phase composites with TPMS
               Process. 2023;102:375-386.                         architectures. Thin Walled Struct. 2023;193:111210.
               doi: 10.1016/j.jmapro.2023.07.055                  doi: 10.1016/j.tws.2023.111210
            13.  Finazzi V, Berti F, Petrini L, Previtali B, Demir AG. Additive   23.  Gado MG, Ookawara S. 3D-printed Triply Periodic Minimal
               manufacturing and post-processing of superelastic NiTi   Surface (TPMS) structures: Towards potential application
               micro struts as building blocks for cardiovascular stents.   of adsorption-based atmospheric water harvesting. Energy
               Addit Manuf. 2023;70:103561.                       Convers Manag. 2023;297:117729.
               doi: 10.1016/j.addma.2023.103561                   doi: 10.1016/j.enconman.2023.117729
            14.  Wang J, Huang B, Gu X, Zhu J, Zhang W. Actuation   24.  Yang L, Li Y, Chen Y, Yan C, Liu B, Shi Y. Topologically
               performance of machined helical springs from NiTi shape   optimized lattice structures with superior fatigue
               memory alloy. Int J Mech Sci. 2022;236:107744.     performance. Int J Fatigue. 2022;165:107188.
               doi: 10.1016/j.ijmecsci.2022.107744                doi: 10.1016/j.ijfatigue.2022.107188
            15.  Luo J, Xu K, Li C, Li M, Lin Y. The evolution of dynamic   25.  Zhang C, Qiao H, Yang L, et al. Vibration characteristics of
               recrystallization and recrystallization texture during   additive manufactured IWP-type  TPMS lattice structures.
               isothermal compression of NiTi shape memory alloy. Mater   Compos Struct. 2024;327:117642.
               Sci Eng A. 2021;820:141424.
                                                                  doi: 10.1016/j.compstruct.2023.117642
               doi: 10.1016/j.msea.2021.141424
                                                               26.  Fu H, Kaewunruen S. Experimental and DEM investigation
            16.  Kan Q, Zhang Y, Xu Y, Kang G, Yu C. Tension-compression   of axially-loaded behaviours of IWP-based structures. Int J
               asymmetric functional degeneration of super-elastic   Mech Sci. 2022;235:107738.
               NiTi  shape  memory  alloy:  Experimental  observation
               and multiscale constitutive model.  Int J Solids Struct.      doi: 10.1016/j.ijmecsci.2022.107738
               2023;280:112384.                                27.  Ge J, Yuan B, Chen H, et al. Anisotropy in microstructural
               doi: 10.1016/j.ijsolstr.2023.112384                features and tensile performance of laser powder bed fusion
                                                                  NiTi alloys. J Mater Res Technol. 2023;24:8656-8668.
            17.  Safdel A, Zaker N, Botton GA, Elbestawi MA. The role of
               texture and restoration mechanisms in defining the tension-     doi: 10.1016/j.jmrt.2023.05.046
               compression asymmetry behavior of aged NiTi alloys   28.  Qi Y, Sha P, Yang K,  et al. Construction and parameter
               fabricated by laser powder bed fusion.  Mater Sci Eng A.   optimization of LPBF-NiTi alloy bionic superhydrophobic
               2023;864:144592.
                                                                  surface based on laser processing.  J  Mater Res Technol.
               doi: 10.1016/j.msea.2023.144592                    2023;24:9462-9475.


            Volume 3 Issue 2 (2024)                         14                             doi: 10.36922/msam.3380
   106   107   108   109   110   111   112   113   114   115   116