Page 112 - MSAM-3-2
P. 112
Materials Science in Additive Manufacturing NiTi lattice: Performance optimization
doi: 10.1016/j.jmrt.2023.05.162 deformation and fracture behavior of additively
manufactured Ti-6Al-4V cellular structures. Int J Lightweight
29. Yang L, Yan C, Fan H, et al. Investigation on the orientation
dependence of elastic response in Gyroid cellular structures. Mater Manuf. 2022;5(1):126-135.
J Mech Behav Biomed Mater. 2019;90:73-85. doi: 10.1016/j.ijlmm.2021.11.003
doi: 10.1016/j.jmbbm.2018.09.042 40. Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, Alomarah A,
Ponnusamy P. Mechanical properties and energy absorption
30. International Organization for Standardization. ISO
13314:2011, Mechanical Testing of Metals--Ductility Testing- capability of functionally graded F2BCC lattice fabricated by
-Compression Test for Porous and Cellular Metals. Geneva: SLM. Mater Des. 2018;144:32-44.
International Organization for Standardization; 2011. p. 1-7. doi: 10.1016/j.matdes.2018.01.059
31. Chen W, Yang Q, Huang S, Kruzic JJ, Li X. Compression 41. Bian Y, Li P, Yang F, Wang P, Li W, Fan H. Deformation mode
behavior of graded NiTi gyroid-structures fabricated by laser and energy absorption of polycrystal-inspired square-cell
powder bed fusion additive manufacturing under monotonic lattice structures. Appl Math Mech. 2020;41(10):1561-1582.
and cyclic loading. JOM. 2021;73(12):4154-4165.
doi: 10.1007/s10483-020-2648-8
doi: 10.1007/s11837-021-04938-x
42. Li QM, Magkiriadis I, Harrigan JJ. Compressive strain
32. Yang L, Wu S, Yan C, et al. Fatigue properties of Ti-6Al-4V at the onset of densification of cellular solids. J Cell Plast.
Gyroid graded lattice structures fabricated by laser 2006;42(5):371-392.
powder bed fusion with lateral loading. Addit Manuf.
2021;46:102214. doi: 10.1177/0021955x06063519
doi: 10.1016/j.addma.2021.102214 43. Prevéy PS, Cammett JT. The influence of surface
enhancement by low plasticity burnishing on the corrosion
33. Jiang H, Wang X, Xi R, et al. Size effect on the microstructure, fatigue performance of AA7075-T6. Int J Fatigue.
phase transformation behavior, and mechanical properties 2004;26(9):975-982.
of NiTi shape memory alloys fabricated by laser powder bed
fusion. J Mater Sci Technol. 2023;157:200-212. doi: 10.1016/j.ijfatigue.2004.01.010
doi: 10.1016/j.jmst.2023.02.026 44. Nemat-Nasser S, Guo WG. Superelastic and cyclic response
of NiTi SMA at various strain rates and temperatures. Mech
34. Zheng N, Zhai X, Chen F. Topology optimization of Self- Mater. 2006;38(5):463-474.
supporting porous structures based on triply periodic
minimal surfaces. Comput Aided Des. 2023;161:103542. doi: 10.1016/j.mechmat.2005.07.004
doi: 10.1016/j.cad.2023.103542 45. Gall K, Maier HJ. Cyclic deformation mechanisms in
precipitated NiTi shape memory alloys. Acta Mater.
35. Hu J, Wang S, Wang Y, Li F, Luo Z. A lightweight methodology 2002;50(18):4643-4657.
of 3D printed objects utilizing multi-scale porous structures.
Vis Comput. 2019;35:949-959. doi: 10.1016/S1359-6454(02)00315-4
doi: 10.1007/s00371-019-01672-z 46. Sun ZP, Guo YB, Shim VPW. Deformation and energy
absorption characteristics of additively-manufactured
36. Chen W, Gu D, Yang J, Yang Q, Chen J, Shen X. Compressive polymeric lattice structures - Effects of cell topology and
mechanical properties and shape memory effect of NiTi material anisotropy. Thin-Walled Struct. 2021;169:108420.
gradient lattice structures fabricated by laser powder bed
fusion. Int J Extrem Manuf. 2022;4(4):045002. doi: 10.1016/j.tws.2021.108420
doi: 10.1088/2631-7990/ac8ef3 47. Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape
memory alloys. Prog Mater Sci. 2005;50(5):511-678.
37. Sun L, Chen K, Geng P, Zhou Y, Wen S, Shi Y. Mechanical
and shape memory properties of NiTi triply periodic doi: 10.1016/j.pmatsci.2004.10.001
minimal surface structures fabricated by laser powder bed 48. Yang L, Yan C, Cao W, et al. Compression-compression
fusion. J Manuf Process. 2023;101:1091-1100. fatigue behaviour of gyroid-type triply periodic minimal
doi: 10.1016/j.jmapro.2023.06.034 surface porous structures fabricated by selective laser
melting. Acta Mater. 2019;181:49-66.
38. Yang L, Mertens R, Ferrucci M, Yan C, Shi Y, Yang S.
Continuous graded Gyroid cellular structures fabricated doi: 10.1016/j.actamat.2019.09.042
by selective laser melting: Design, manufacturing and 49. Zhao S, Li SJ, Wang SG, et al. Compressive and fatigue
mechanical properties. Mater Des. 2019;162:394-404. behavior of functionally graded Ti-6Al-4V meshes fabricated
doi: 10.1016/j.matdes.2018.12.007 by electron beam melting. Acta Mater. 2018;150:1-15.
39. Loginov YN, Koptyug A, Popov VV Jr., et al. Compression doi: 10.1016/j.actamat.2018.02.060
Volume 3 Issue 2 (2024) 15 doi: 10.36922/msam.3380

