Page 112 - MSAM-3-2
P. 112

Materials Science in Additive Manufacturing                            NiTi lattice: Performance optimization



               doi: 10.1016/j.jmrt.2023.05.162                    deformation and fracture behavior of additively
                                                                  manufactured Ti-6Al-4V cellular structures. Int J Lightweight
            29.  Yang L, Yan C, Fan H, et al. Investigation on the orientation
               dependence of elastic response in Gyroid cellular structures.   Mater Manuf. 2022;5(1):126-135.
               J Mech Behav Biomed Mater. 2019;90:73-85.          doi: 10.1016/j.ijlmm.2021.11.003
               doi: 10.1016/j.jmbbm.2018.09.042                40.  Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, Alomarah A,
                                                                  Ponnusamy P. Mechanical properties and energy absorption
            30.  International Organization for  Standardization.  ISO
               13314:2011, Mechanical Testing of Metals--Ductility Testing-  capability of functionally graded F2BCC lattice fabricated by
               -Compression Test for Porous and Cellular Metals. Geneva:   SLM. Mater Des. 2018;144:32-44.
               International Organization for Standardization; 2011. p. 1-7.     doi: 10.1016/j.matdes.2018.01.059
            31.  Chen W, Yang Q, Huang S, Kruzic JJ, Li X. Compression   41.  Bian Y, Li P, Yang F, Wang P, Li W, Fan H. Deformation mode
               behavior of graded NiTi gyroid-structures fabricated by laser   and energy absorption of polycrystal-inspired square-cell
               powder bed fusion additive manufacturing under monotonic   lattice structures. Appl Math Mech. 2020;41(10):1561-1582.
               and cyclic loading. JOM. 2021;73(12):4154-4165.
                                                                  doi: 10.1007/s10483-020-2648-8
               doi: 10.1007/s11837-021-04938-x
                                                               42.  Li QM, Magkiriadis I, Harrigan JJ. Compressive strain
            32.  Yang L, Wu S, Yan C, et al. Fatigue properties of Ti-6Al-4V   at the onset of densification of cellular solids. J Cell Plast.
               Gyroid graded lattice structures fabricated by laser   2006;42(5):371-392.
               powder bed fusion with lateral loading.  Addit Manuf.
               2021;46:102214.                                    doi: 10.1177/0021955x06063519
               doi: 10.1016/j.addma.2021.102214                43.  Prevéy PS, Cammett JT. The influence of surface
                                                                  enhancement by low plasticity burnishing on the corrosion
            33.  Jiang H, Wang X, Xi R, et al. Size effect on the microstructure,   fatigue performance of AA7075-T6.  Int J Fatigue.
               phase transformation behavior, and mechanical properties   2004;26(9):975-982.
               of NiTi shape memory alloys fabricated by laser powder bed
               fusion. J Mater Sci Technol. 2023;157:200-212.     doi: 10.1016/j.ijfatigue.2004.01.010
               doi: 10.1016/j.jmst.2023.02.026                 44.  Nemat-Nasser S, Guo WG. Superelastic and cyclic response
                                                                  of NiTi SMA at various strain rates and temperatures. Mech
            34.  Zheng N, Zhai X, Chen F. Topology optimization of Self-  Mater. 2006;38(5):463-474.
               supporting porous structures based on triply periodic
               minimal surfaces. Comput Aided Des. 2023;161:103542.     doi: 10.1016/j.mechmat.2005.07.004
               doi: 10.1016/j.cad.2023.103542                  45.  Gall K, Maier HJ. Cyclic deformation mechanisms in
                                                                  precipitated NiTi shape memory alloys.  Acta  Mater.
            35.  Hu J, Wang S, Wang Y, Li F, Luo Z. A lightweight methodology   2002;50(18):4643-4657.
               of 3D printed objects utilizing multi-scale porous structures.
               Vis Comput. 2019;35:949-959.                       doi: 10.1016/S1359-6454(02)00315-4
               doi: 10.1007/s00371-019-01672-z                 46.  Sun ZP, Guo YB, Shim VPW. Deformation and energy
                                                                  absorption characteristics of additively-manufactured
            36.  Chen W, Gu D, Yang J, Yang Q, Chen J, Shen X. Compressive   polymeric lattice structures  -  Effects of cell topology and
               mechanical  properties  and  shape  memory  effect  of  NiTi   material anisotropy. Thin-Walled Struct. 2021;169:108420.
               gradient lattice structures fabricated by laser powder bed
               fusion. Int J Extrem Manuf. 2022;4(4):045002.      doi: 10.1016/j.tws.2021.108420
               doi: 10.1088/2631-7990/ac8ef3                   47.  Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape
                                                                  memory alloys. Prog Mater Sci. 2005;50(5):511-678.
            37.  Sun L, Chen K, Geng P, Zhou Y, Wen S, Shi Y. Mechanical
               and  shape  memory  properties  of  NiTi  triply  periodic      doi: 10.1016/j.pmatsci.2004.10.001
               minimal surface structures fabricated by laser powder bed   48.  Yang L, Yan C, Cao W,  et al. Compression-compression
               fusion. J Manuf Process. 2023;101:1091-1100.       fatigue  behaviour  of gyroid-type  triply periodic  minimal
               doi: 10.1016/j.jmapro.2023.06.034                  surface  porous  structures  fabricated by  selective laser
                                                                  melting. Acta Mater. 2019;181:49-66.
            38.  Yang L, Mertens R, Ferrucci M, Yan C, Shi Y, Yang S.
               Continuous graded Gyroid cellular structures fabricated      doi: 10.1016/j.actamat.2019.09.042
               by selective laser melting: Design, manufacturing and   49.  Zhao S, Li SJ, Wang SG,  et al. Compressive and fatigue
               mechanical properties. Mater Des. 2019;162:394-404.  behavior of functionally graded Ti-6Al-4V meshes fabricated
               doi: 10.1016/j.matdes.2018.12.007                  by electron beam melting. Acta Mater. 2018;150:1-15.
            39.  Loginov YN, Koptyug A, Popov VV Jr., et al. Compression      doi: 10.1016/j.actamat.2018.02.060


            Volume 3 Issue 2 (2024)                         15                             doi: 10.36922/msam.3380
   107   108   109   110   111   112   113   114   115   116   117