Page 71 - MSAM-3-4
P. 71
Materials Science in Additive Manufacturing 3D printing of anti-microbial parts
doi: 10.3390/polym13101552 of flat surfaces and nanoparticles derivatized with alkylated
polyethylenimines. Biotechnol Prog. 2002;18:1082-1086.
2. Cappitelli F, Sorlini C. Microorganisms attack synthetic
polymers in items representing our cultural heritage. Appl doi: 10.1021/bp025597w
Environ Microbiol. 2008;74:564-569.
13. Gibney KA, Sovadinova I, Lopez AI, et al. Poly(ethylene
doi: 10.1128/AEM.01768-07 imine)s as anti-microbial agents with selective activity.
3. Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C. Macromol Biosci. 2012;12:1279-1289.
Bacterial and fungal deterioration of the Milan Cathedral doi: 10.1002/mabi.201200052
marble treated with protective synthetic resins. Sci Total
Environ. 2007;385(1-3):172-181. 14. Guo L, Yuan W, Lu Z, Li CM. Polymer/nanosilver composite
coatings for antibacterial applications. Colloids Surf A
doi: 10.1016/j.scitotenv.2007.06.022 Physicochem Eng Asp. 2013;439:69-83.
4. Webb JS, Nixon M, Eastwood IM, Greenhalgh M, doi: 10.1016/j.colsurfa.2012.12.029
Robson GD, Handley PS. Fungal colonization and
biodeterioration of plasticized polyvinyl chloride. Appl 15. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-
Environ Microbiol. 2000;66:3194-3200. polymer nanocomposites: An excellent and cost-effective
biocide for use on antibacterial surfaces. Mater Sci Eng C.
doi: 10.1128/aem.66.8.3194-3200.2000 2016;69:1391-1409.
5. Friedrich J, Zalar P, Mohorcic M, Klun U, Krzan A. Ability of doi: 10.1016/j.msec.2016.08.041
fungi to degrade synthetic polymer nylon-6. Chemosphere.
2007;67(10):2089-2095. 16. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The
antibacterial mechanism of silver nanoparticles and its
doi: 10.1016/j.chemosphere.2006.09.038 application in dentistry. Int J Nanomedicine. 2020;15:
6. Cai Z, Li M, Zhu Z, et al. Biological degradation of plastics and 2555-2562.
microplastics: A recent perspective on associated mechanisms doi: 10.2147/IJN.S246764
and influencing factors. Microorganisms. 2023;11:1661.
17. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP Jr.,
doi: 10.3390/microorganisms11071661 Irwin P. Study on the mechanism of antibacterial action
7. Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable of magnesium oxide nanoparticles against foodborne
production and degradation of plastics using microbes. Nat pathogens. J Nanobiotechnol. 2016;14:54.
Microbiol. 2023;8:2253-2276. doi: 10.1186/s12951-016-0202-0
doi: 10.1038/s41564-023-01529-1 18. Dong C, Song D, Cairney J, Maddan LO, He G, Deng Y.
8. Majumdar P, Lee E, Patel N, Stafslien SJ, Daniels J, Antibacterial study of Mg(OH) nanoplatelets. Mater Res
2
Chisholm BJ. Development of environmentally friendly, Bull. 2011;46:576-582.
antifouling coatings based on tethered quaternary doi: 10.1016/j.materresbull.2010.12.023
ammonium salts in a crosslinked polydimethylsiloxane
matrix. J Coat Technol Res. 2008;5:405-417. 19. Zhu Y, Tang Y, Ruan Z, et al. Mg(OH) nanoparticles
2
enhance the antibacterial activities of macrophages by
doi: 10.1007/s11998-008-9098-4 activating the reactive oxygen species. J Biomed Mater Res
9. Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine A. 2021;109:2369-2380.
polymers and coatings: A review of their synthesis, doi: 10.1002/jbm.a.37219
characterization, and applications. Biomacromolecules.
2013;14:585-601. 20. Alkarri S, Sharma D, Bergholz TM, Rabnawaz M.
Fabrication methodologies for antimicrobial polypropylene
doi: 10.1021/bm301980q surfaces with leachable and nonleachable antimicrobial
10. Dong A, Huang J, Lan S, et al. Synthesis of N-halamine agents. J Appl Polym Sci. 2023;141:e54757.
functionalized silica-polymer core-shell nanoparticles doi: 10.1002/app.54757
and their enhanced antibacterial activity. Nanotechnology.
2011;22:295602. 21. ISO - International Organization for Standardization.
ASTM Additive Manufacturing Processes, ISO/ASTM
doi: 10.1088/0957-4484/22/29/295602 52900:2015. Switzerland: International Organization for
11. Alfei S, Schito AM. Positively charged polymers as promising Standardization; 2015.
devices against multidrug resistant gram-negative bacteria: 22. Beaman JJ, Deckard CR. Selective Laser Sintering with
A review. Polymers (Basel). 2020;12:1195.
Assisted Powder Handling. U.S. Patent 4,938,816A; 1986.
doi: 10.3390/polym12051195
23. Schmid M. Selektives Lasersintern (SLS) Mit Kunststoffen:
12. Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties Technologie, Prozesse und Werkstoffe. Ohio: Hanser; 2015.
Volume 3 Issue 4 (2024) 14 doi: 10.36922/msam.4970

