Page 71 - MSAM-3-4
P. 71

Materials Science in Additive Manufacturing                               3D printing of anti-microbial parts



               doi: 10.3390/polym13101552                         of flat surfaces and nanoparticles derivatized with alkylated
                                                                  polyethylenimines. Biotechnol Prog. 2002;18:1082-1086.
            2.   Cappitelli F, Sorlini C. Microorganisms attack synthetic
               polymers in items representing our cultural heritage. Appl      doi: 10.1021/bp025597w
               Environ Microbiol. 2008;74:564-569.
                                                               13.  Gibney KA, Sovadinova I, Lopez AI,  et al. Poly(ethylene
               doi: 10.1128/AEM.01768-07                          imine)s as anti-microbial agents with selective activity.
            3.   Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C.   Macromol Biosci. 2012;12:1279-1289.
               Bacterial and fungal deterioration of the Milan Cathedral      doi: 10.1002/mabi.201200052
               marble treated with protective synthetic resins.  Sci Total
               Environ. 2007;385(1-3):172-181.                 14.  Guo L, Yuan W, Lu Z, Li CM. Polymer/nanosilver composite
                                                                  coatings for antibacterial applications.  Colloids Surf A
               doi: 10.1016/j.scitotenv.2007.06.022               Physicochem Eng Asp. 2013;439:69-83.
            4.   Webb JS, Nixon M, Eastwood IM, Greenhalgh M,      doi: 10.1016/j.colsurfa.2012.12.029
               Robson  GD,  Handley  PS.  Fungal  colonization  and
               biodeterioration of plasticized polyvinyl chloride.  Appl   15.  Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-
               Environ Microbiol. 2000;66:3194-3200.              polymer nanocomposites: An excellent and cost-effective
                                                                  biocide for use on antibacterial surfaces. Mater Sci Eng C.
               doi: 10.1128/aem.66.8.3194-3200.2000               2016;69:1391-1409.
            5.   Friedrich J, Zalar P, Mohorcic M, Klun U, Krzan A. Ability of      doi: 10.1016/j.msec.2016.08.041
               fungi to degrade synthetic polymer nylon-6. Chemosphere.
               2007;67(10):2089-2095.                          16.  Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The
                                                                  antibacterial mechanism of silver nanoparticles and its
               doi: 10.1016/j.chemosphere.2006.09.038             application in dentistry.  Int J Nanomedicine. 2020;15:
            6.   Cai Z, Li M, Zhu Z, et al. Biological degradation of plastics and   2555-2562.
               microplastics: A recent perspective on associated mechanisms      doi: 10.2147/IJN.S246764
               and influencing factors. Microorganisms. 2023;11:1661.
                                                               17.  He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP Jr.,
               doi: 10.3390/microorganisms11071661                Irwin P. Study on the mechanism of antibacterial action
            7.   Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable   of magnesium oxide nanoparticles against foodborne
               production and degradation of plastics using microbes. Nat   pathogens. J Nanobiotechnol. 2016;14:54.
               Microbiol. 2023;8:2253-2276.                       doi: 10.1186/s12951-016-0202-0
               doi: 10.1038/s41564-023-01529-1                 18.  Dong C, Song D, Cairney J, Maddan LO, He G, Deng Y.
            8.   Majumdar P, Lee E, Patel N, Stafslien SJ, Daniels J,   Antibacterial study of Mg(OH)  nanoplatelets.  Mater Res
                                                                                          2
               Chisholm  BJ. Development of environmentally friendly,   Bull. 2011;46:576-582.
               antifouling  coatings  based  on  tethered  quaternary      doi: 10.1016/j.materresbull.2010.12.023
               ammonium salts in a crosslinked polydimethylsiloxane
               matrix. J Coat Technol Res. 2008;5:405-417.     19.  Zhu Y, Tang Y, Ruan Z,  et al. Mg(OH)  nanoparticles
                                                                                                  2
                                                                  enhance the antibacterial activities of macrophages by
               doi: 10.1007/s11998-008-9098-4                     activating the reactive oxygen species. J Biomed Mater Res
            9.   Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine   A. 2021;109:2369-2380.
               polymers  and  coatings:  A  review  of  their  synthesis,      doi: 10.1002/jbm.a.37219
               characterization, and applications.  Biomacromolecules.
               2013;14:585-601.                                20.  Alkarri S, Sharma D, Bergholz TM, Rabnawaz M.
                                                                  Fabrication methodologies for antimicrobial polypropylene
               doi: 10.1021/bm301980q                             surfaces  with  leachable  and  nonleachable  antimicrobial
            10.  Dong A, Huang J, Lan S,  et  al. Synthesis of N-halamine   agents. J Appl Polym Sci. 2023;141:e54757.
               functionalized  silica-polymer  core-shell  nanoparticles      doi: 10.1002/app.54757
               and their enhanced antibacterial activity.  Nanotechnology.
               2011;22:295602.                                 21.  ISO  -  International Organization for Standardization.
                                                                  ASTM  Additive  Manufacturing Processes,  ISO/ASTM
               doi: 10.1088/0957-4484/22/29/295602                52900:2015.  Switzerland: International Organization for
            11.  Alfei S, Schito AM. Positively charged polymers as promising   Standardization;  2015.
               devices against multidrug resistant gram-negative bacteria:   22.  Beaman JJ, Deckard CR.  Selective  Laser  Sintering with
               A review. Polymers (Basel). 2020;12:1195.
                                                                  Assisted Powder Handling. U.S. Patent 4,938,816A; 1986.
               doi: 10.3390/polym12051195
                                                               23.  Schmid M.  Selektives Lasersintern  (SLS) Mit Kunststoffen:
            12.  Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties   Technologie, Prozesse und Werkstoffe. Ohio: Hanser; 2015.


            Volume 3 Issue 4 (2024)                         14                             doi: 10.36922/msam.4970
   66   67   68   69   70   71   72   73   74   75   76