Page 72 - MSAM-3-4
P. 72

Materials Science in Additive Manufacturing                               3D printing of anti-microbial parts



            24.  Bashir Z, Gu H, Yang L. Evaluation of poly (ethylene   barrier properties of linear low-density polyethylene extrusion
               terephthalate) powder as a material for selective laser   blow-molded bottles. Polymers (Basel). 2024;16:1914.
               sintering, and characterization of printed part. Polym Eng      doi: 10.3390/polym16131914
               Sci. 2018;58:1888-1900.
                                                               36.  Alkarri S.  Developing Methods for Incorporating Anti-
               doi: 10.1002/pen.24797
                                                                  microbial Biocidal Nanoparticles in Thermoplastics.
            25.  Fahad M, Hopkinson N. Evaluation and comparison of   Michigan State University; 2023. Available from: https://
               geometrical accuracy of parts produced by sintering-based   www.proquest.com/openview/3d3600d8ed0e1614fa1c801e
               additive manufacturing processes. Int J Adv Manuf Technol.   2fdf9dc3/1?pq-origsite=gscholar&cbl=18750&diss=y [Last
               2017;88:3389-3394.                                 accessed on 2024 Aug 15].
               doi: 10.1007/s00170-016-9036-z                  37.  Halbus AF, Horozov TS, Paunov VN. Controlling the
                                                                  antimicrobial action of surface modified magnesium
            26.  Hopkinson N, Erasenthiran P.  Method  and  Apparatus  for   hydroxide nanoparticle. Biomimetics (Basel). 2019;4:41.
               Combining Particulate Material. US Patent 7,879,282 B2; 2011.
                                                                  doi: 10.3390/biomimetics4020041
            27.  Hopkinson N, Hague R, Dickens P. Rapid Manufacturing:
               An Industrial Revolution for a Digital Age. Hoboken, New   38.  Pan X, Wang Y, Chen Z, et al. Investigation of antibacterial
               Jersey: Wiley-Blackwell; 2005.                     activity and related mechanism of a series of nano-Mg(OH)₂.
                                                                  ACS Appl Mater Interfaces. 2013;5(3):1137-1142.
            28.  Ellis A. The effect of build orientation and surface
               modification on mechanical properties of high speed      doi: 10.1021/am302910q
               sintered parts. Surface Topogr Metrol Prop. 2015;3(3):34005.  39.  Gu H, Al Fayez F, Yang L, Ahmad T, Bashir Z. Powder bed
               doi: 10.1088/2051-672X/3/3/034005                  fusion of aluminum-poly(ethylene terephthalate) hybrid
                                                                  powder: Process behavior and characterization of printed
            29.  Brown  R,  Morgan  CT,  Majewski  CE.  Not  Just  Nylon   parts. Addit Manuf. 2022;51:102616.
               Improving the Range of Materials for High Speed
               Sintering. In: Solid Freeform Fabrication 2018: Proceedings      doi: 10.1016/j.addma.2022.102616
               of the 29  Annual International Solid Freeform Fabrication   40.  Anis A, Elnour AY, Alam MA, Al-Zahrani SM, AlFayez F,
                      th
               Symposium - An Additive Manufacturing Conference; 2018.  Bashir Z. Aluminum-filled amorphous-PET, a composite
            30.  Pezold D, Wimmer  M, Alfayez  F,  Bashir Z,  Döpper F.   showing simultaneous increase in modulus and impact
               Evaluation of polyethylene terephthalate powder in high   resistance. Polymers (Basel). 2020;12:2038.
               speed sintering. Polymers (Basel). 2022;14:2095.     doi: 10.3390/polym12092038
               doi: 10.3390/polym14102095                      41.  Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X.
            31.  Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers   Nano silver-induced toxicity and associated mechanisms.
               for 3D printing and customized additive manufacturing.   Int J Nanomedicine. 2022;17:1851-1864.
               Chem Rev. 2017;117(1(5):10212-10290.               doi: 10.2147/IJN.S355131
               doi: 10.1021/acs.chemrev.7b00074                42.  Wang Y, Liu Y, Li, X, et al. Investigation of the biosafety of
            32.  Gu H, Bashir Z, Yang L. The re-usability of heat-exposed   antibacterial Mg(OH)  nanoparticles to a normal biological
                                                                                  2
               poly (ethylene terephthalate) powder for laser sintering.   system. J Funct Biomater. 2023;14:229.
               Addit Manuf. 2019;28:194-204.                      doi: 10.3390/jfb14040229
               doi: 10.1016/j.addma.2019.05.004                43.  Singh R, Smitha MS, Singh SP. The role of nanotechnology
            33.  Pham DT, Dotchev KD, Yusoff W. Deterioration of   in combating multi-drug resistant bacteria.  J  Nanosci
               polyamide powder properties in the laser sintering process.   Nanotechnol. 2014;14:4745-4756.
               Proc Inst Mech Eng C J Mech Eng Sci. 2008;222:2163-2176.     doi: 10.1166/jnn.2014.9527
               doi: 10.1243/09544062jmes839                    44.  Guerrero Correa M, Martínez FB, Vidal CP, Streitt C, Escrig J,
            34.  Alkarri S, Frame M, Cairney J, Maddan L, Kim JH,   de Dicastillo CL. Antimicrobial metal-based nanoparticles:
               Rayner JO. Investigating anti-bacterial and anti-COVID-19   A review on their synthesis, types and antimicrobial action.
               virus properties and mode of action of pure Mg (OH)   2  Beilstein J Nanotechnol. 2020;11:1450-1469.
               and copper-infused Mg (OH)  nanoparticles and coated      doi: 10.3762/bjnano.11.129
                                      2
               polypropylene surfaces. Int J Clin Virol. 2024;8(1):8-23.
                                                               45.  Campos MD, Zucchi PC, Phung A, Leonard SN, Hirsch EB.
               doi: 10.29328/journal.ijcv.1001057                 The activity of antimicrobial surfaces varies by testing
                                                                  protocol utilized. PLoS One. 2016;11(8):e0160728.
            35.  Alkarri S, Naveed M, Alali F, Vachon J, Walworth A,
               Vanderberg A. Anti-microbial, thermal, mechanical, and gas      doi: 10.1371/journal.pone.0160728


            Volume 3 Issue 4 (2024)                         15                             doi: 10.36922/msam.4970
   67   68   69   70   71   72   73   74   75   76   77