Page 72 - MSAM-3-4
P. 72
Materials Science in Additive Manufacturing 3D printing of anti-microbial parts
24. Bashir Z, Gu H, Yang L. Evaluation of poly (ethylene barrier properties of linear low-density polyethylene extrusion
terephthalate) powder as a material for selective laser blow-molded bottles. Polymers (Basel). 2024;16:1914.
sintering, and characterization of printed part. Polym Eng doi: 10.3390/polym16131914
Sci. 2018;58:1888-1900.
36. Alkarri S. Developing Methods for Incorporating Anti-
doi: 10.1002/pen.24797
microbial Biocidal Nanoparticles in Thermoplastics.
25. Fahad M, Hopkinson N. Evaluation and comparison of Michigan State University; 2023. Available from: https://
geometrical accuracy of parts produced by sintering-based www.proquest.com/openview/3d3600d8ed0e1614fa1c801e
additive manufacturing processes. Int J Adv Manuf Technol. 2fdf9dc3/1?pq-origsite=gscholar&cbl=18750&diss=y [Last
2017;88:3389-3394. accessed on 2024 Aug 15].
doi: 10.1007/s00170-016-9036-z 37. Halbus AF, Horozov TS, Paunov VN. Controlling the
antimicrobial action of surface modified magnesium
26. Hopkinson N, Erasenthiran P. Method and Apparatus for hydroxide nanoparticle. Biomimetics (Basel). 2019;4:41.
Combining Particulate Material. US Patent 7,879,282 B2; 2011.
doi: 10.3390/biomimetics4020041
27. Hopkinson N, Hague R, Dickens P. Rapid Manufacturing:
An Industrial Revolution for a Digital Age. Hoboken, New 38. Pan X, Wang Y, Chen Z, et al. Investigation of antibacterial
Jersey: Wiley-Blackwell; 2005. activity and related mechanism of a series of nano-Mg(OH)₂.
ACS Appl Mater Interfaces. 2013;5(3):1137-1142.
28. Ellis A. The effect of build orientation and surface
modification on mechanical properties of high speed doi: 10.1021/am302910q
sintered parts. Surface Topogr Metrol Prop. 2015;3(3):34005. 39. Gu H, Al Fayez F, Yang L, Ahmad T, Bashir Z. Powder bed
doi: 10.1088/2051-672X/3/3/034005 fusion of aluminum-poly(ethylene terephthalate) hybrid
powder: Process behavior and characterization of printed
29. Brown R, Morgan CT, Majewski CE. Not Just Nylon parts. Addit Manuf. 2022;51:102616.
Improving the Range of Materials for High Speed
Sintering. In: Solid Freeform Fabrication 2018: Proceedings doi: 10.1016/j.addma.2022.102616
of the 29 Annual International Solid Freeform Fabrication 40. Anis A, Elnour AY, Alam MA, Al-Zahrani SM, AlFayez F,
th
Symposium - An Additive Manufacturing Conference; 2018. Bashir Z. Aluminum-filled amorphous-PET, a composite
30. Pezold D, Wimmer M, Alfayez F, Bashir Z, Döpper F. showing simultaneous increase in modulus and impact
Evaluation of polyethylene terephthalate powder in high resistance. Polymers (Basel). 2020;12:2038.
speed sintering. Polymers (Basel). 2022;14:2095. doi: 10.3390/polym12092038
doi: 10.3390/polym14102095 41. Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X.
31. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers Nano silver-induced toxicity and associated mechanisms.
for 3D printing and customized additive manufacturing. Int J Nanomedicine. 2022;17:1851-1864.
Chem Rev. 2017;117(1(5):10212-10290. doi: 10.2147/IJN.S355131
doi: 10.1021/acs.chemrev.7b00074 42. Wang Y, Liu Y, Li, X, et al. Investigation of the biosafety of
32. Gu H, Bashir Z, Yang L. The re-usability of heat-exposed antibacterial Mg(OH) nanoparticles to a normal biological
2
poly (ethylene terephthalate) powder for laser sintering. system. J Funct Biomater. 2023;14:229.
Addit Manuf. 2019;28:194-204. doi: 10.3390/jfb14040229
doi: 10.1016/j.addma.2019.05.004 43. Singh R, Smitha MS, Singh SP. The role of nanotechnology
33. Pham DT, Dotchev KD, Yusoff W. Deterioration of in combating multi-drug resistant bacteria. J Nanosci
polyamide powder properties in the laser sintering process. Nanotechnol. 2014;14:4745-4756.
Proc Inst Mech Eng C J Mech Eng Sci. 2008;222:2163-2176. doi: 10.1166/jnn.2014.9527
doi: 10.1243/09544062jmes839 44. Guerrero Correa M, Martínez FB, Vidal CP, Streitt C, Escrig J,
34. Alkarri S, Frame M, Cairney J, Maddan L, Kim JH, de Dicastillo CL. Antimicrobial metal-based nanoparticles:
Rayner JO. Investigating anti-bacterial and anti-COVID-19 A review on their synthesis, types and antimicrobial action.
virus properties and mode of action of pure Mg (OH) 2 Beilstein J Nanotechnol. 2020;11:1450-1469.
and copper-infused Mg (OH) nanoparticles and coated doi: 10.3762/bjnano.11.129
2
polypropylene surfaces. Int J Clin Virol. 2024;8(1):8-23.
45. Campos MD, Zucchi PC, Phung A, Leonard SN, Hirsch EB.
doi: 10.29328/journal.ijcv.1001057 The activity of antimicrobial surfaces varies by testing
protocol utilized. PLoS One. 2016;11(8):e0160728.
35. Alkarri S, Naveed M, Alali F, Vachon J, Walworth A,
Vanderberg A. Anti-microbial, thermal, mechanical, and gas doi: 10.1371/journal.pone.0160728
Volume 3 Issue 4 (2024) 15 doi: 10.36922/msam.4970

