Page 93 - MSAM-4-3
P. 93

Materials Science in Additive Manufacturing                            Interpretable GP melt track prediction



            22.  Xiang Y, Zhang S, Wei Z, et al. Forming and defect analysis      doi: 10.1016/j.addma.2020.101470
               for single track scanning in selective laser melting of   31.  Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion
               Ti6Al4V. Appl Phys A. 2018;124(10):685.
                                                                  porosity for powder bed fusion. Addit Manuf. 2017;14:39-48.
               doi: 10.1007/s00339-018-2056-9
                                                                  doi: 10.1016/j.addma.2016.12.001
            23.  Hu Z, Nagarajan B, Song X, Huang R, Zhai W, Wei J.   32.  Ning J, Mirkoohi E, Dong Y, Sievers DE, Garmestani H,
               Formation of SS316L single tracks in micro selective laser   Liang SY. Analytical modeling of 3D temperature distribution
               melting: Surface, geometry, and defects. Adv Mater Sci Eng.   in  selective  laser  melting  of  Ti-6Al-4V  considering  part
               2019;2019:9451406.
                                                                  boundary conditions. J Manuf Process. 2019;44:319-326.
               doi: 10.1155/2019/9451406
                                                                  doi: 10.1016/j.jmapro.2019.06.013
            24.  Zhou H, Su H, Guo Y,  et al. Formation and evolution   33.  Promoppatum P, Yao SC, Pistorius PC, Rollett AD.
               of surface morphology in overhang structure of IN718   A  comprehensive comparison of the analytical and
               superalloy fabricated by laser powder bed fusion.  Acta   numerical prediction of the thermal history and
               Metall Sin. 2023;36(9):1433-1453.
                                                                  solidification microstructure of inconel 718 products made
               doi: 10.1007/s40195-023-01546-3                    by laser powder-bed fusion. Engineering. 2017;3(5):685-694.
            25.  Li C, Guo YB, Zhao JB. Interfacial phenomena and      doi: 10.1016/J.ENG.2017.05.023
               characteristics between the deposited material and substrate
               in selective laser melting Inconel 625.  J  Mater Process   34.  Wang W, Liang SY. A 3D analytical modeling method for
                                                                  keyhole porosity prediction in laser powder bed fusion. Int J
               Technol. 2017;243:269-281.
                                                                  Adv Manuf Technol. 2022;120(5-6):3017-3025.
               doi: 10.1016/j.jmatprotec.2016.12.033
                                                                  doi: 10.1007/s00170-022-08898-7
            26.  Khairallah SA, Anderson AT, Rubenchik A, King WE.
               Laser powder-bed fusion additive manufacturing: Physics   35.  Yang J, Han J, Yu H, et al. Role of molten pool mode on formability,
               of complex melt flow and formation mechanisms of pores,   microstructure and mechanical properties of selective laser
               spatter, and denudation zones. Acta Mater. 2016;108:36-45.  melted Ti-6Al-4V alloy. Mater Des. 2016;110:558-570.
                                                                  doi: 10.1016/j.matdes.2016.08.036
               doi: 10.1016/j.actamat.2016.02.014
                                                               36.  Kamath C, El-dasher B, Gallegos GF, King WE, Sisto A.
            27.  Chen H, Lin X, Sun Y, Wang S, Zhu K, Dan B. Revealing
               formation mechanism of end of process depression in laser   Density of additively-manufactured, 316L SS parts using
               powder bed fusion by multi-physics meso-scale simulation.   laser powder-bed fusion at powers up to 400 W. Int J Adv
               Virtual Phys Prototyp. 2024;19(1):e2326599.        Manuf Technol. 2014;74(1-4):65-78.
                                                                  doi: 10.1007/s00170-014-5954-9
               doi: 10.1080/17452759.2024.2326599
                                                               37.  Salimbeni H, Deisenroth M. Doubly stochastic variational
            28.  Yuan P, Gu D. Molten pool behaviour and its physical
               mechanism during selective laser melting of TiC/AlSi10Mg   inference  for  deep  Gaussian  processes.  In:  Advances in
               nanocomposites: Simulation and experiments. J Phys D Appl   Neural Information Processing Systems. United States:
               Phys. 2015;48(3):035303.                           Morgan Kaufmann Publishers Inc.; 2017. p. 30.
                                                                  doi: 10.48550/arXiv.1705.08933
               doi: 10.1088/0022-3727/48/3/035303
                                                               38.  Roth K, Pemula L, Zepeda J, Scholkopf B, Brox T, Gehler P.
            29.  Yuan W, Chen H, Cheng T, Wei Q. Effects of laser scanning
               speeds on different states of the molten pool during selective   Towards total recall in industrial anomaly detection.
               laser melting: Simulation and experiment.  Mater Des.   In:  IEEE/CVF Conference on Computer Vision and
               2020;189:108542.                                   Pattern Recognition (CVPR). United States: IEEE; 2022.
                                                                  p. 14298-14308.
               doi: 10.1016/j.matdes.2020.108542
                                                                  doi: 10.1109/cvpr52688.2022.01392
            30.  Caprio L, Demir A, Previtali B. Observing molten pool
               surface  oscillations during keyhole  processing  in laser   39.  Shojaie A, Fox EB. Granger causality: A review and recent
               powder bed fusion as a novel method to estimate the   advances. Annu Rev Stat Appl. 2022;9(1):289-319.
               penetration depth. Addit Manuf. 2020;36:101470.     doi: 10.1146/annurev-statistics-040120-010930












            Volume 4 Issue 3 (2025)                         19                        doi: 10.36922/MSAM025200030
   88   89   90   91   92   93   94   95   96   97   98