Page 92 - MSAM-4-3
P. 92
Materials Science in Additive Manufacturing Interpretable GP melt track prediction
2020;368(6491):660-665. based monitoring of laser powder bed fusion. Adv Mater
Technol. 2018;3(12):1800136.
doi: 10.1126/science.aay7830
2. Fang Q, Tan Z, Li H, et al. In-situ capture of melt pool signature doi: 10.1002/admt.201800136
in selective laser melting using U-Net-based convolutional 12. Mojahed Yazdi R, Imani F, Yang H. A hybrid deep
neural network. J Manuf Process. 2021;68:347-355. learning model of process-build interactions in additive
manufacturing. J Manuf Syst. 2020;57:460-468.
doi: 10.1016/j.jmapro.2021.05.052
3. Yang L, Lo L, Ding S, Özel T. Monitoring and detection doi: 10.1016/j.jmsy.2020.11.001
of meltpool and spatter regions in laser powder bed 13. Lopez F, Witherell P, Lane B. Identifying uncertainty in laser
fusion of super alloy Inconel 625. Prog Addit Manuf. powder bed fusion additive manufacturing models. J Mech
2020;5(4):367-378. Des. 2016;138(11):114502.
doi: 10.1007/s40964-020-00140-8 doi: 10.1115/1.4034103
4. Liu J, Wei B, Chang H, Li J, Yang G. Review of visual 14. Mahmoudi M, Ezzat A, Elwany A. Layerwise anomaly
measurement methods for metal vaporization processes in laser detection in laser powder-bed fusion metal additive
powder bed fusion. Micromachines (Basel). 2023;14(7):1351. manufacturing. J Manuf Sci Eng. 2019;141(3):031002.
doi: 10.3390/mi14071351 doi: 10.1115/1.4042108
5. Forien JB, Calta NP, DePond PJ, Guss GM, Roehling TT, 15. Gaikwad A, Giera B, Guss GM, Forien JB, Matthews MJ,
Matthews MJ. Detecting keyhole pore defects and Rao P. Heterogeneous sensing and scientific machine
monitoring process signatures during laser powder bed learning for quality assurance in laser powder bed fusion - a
fusion: A correlation between in situ pyrometry and ex situ single-track study. Addit Manuf. 2020;36:101659.
X-ray radiography. Addit Manuf. 2020;35:101336.
doi: 10.1016/j.addma.2020.101659
doi: 10.1016/j.addma.2020.101336
16. Guo K, Qiao L, Huang Z, Anwer N, Cao Y. A computational
6. Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, model of melt pool morphology for selective laser melting
Marufuzzaman M, Bian L. In-situ monitoring of melt pool process. Int J Adv Manuf Technol. 2022;121(3-4):1651-1673.
images for porosity prediction in directed energy deposition
processes. IISE Trans. 2018;51(5):437-455. doi: 10.1007/s00170-022-09366-y
doi: 10.1080/24725854.2017.1417656 17. Zhang H, Vallabh CK, Zhao X. Registration and fusion
of large-scale melt pool temperature and morphology
7. Khanzadeh M, Dantin M, Tian W, Priddy MW, Doude H, monitoring data demonstrated for surface topography
Bian L. Fast prediction of thermal data stream for direct prediction in LPBF. Addit Manuf. 2022;58:103075.
laser deposition processes using network-based tensor
regression. J Manuf Sci Eng. 2021;144(4):041004. doi: 10.1016/j.addma.2022.103075
doi: 10.1115/1.4052207 18. Biggio L, Wieland A, Chao MA, Kastanis I, Fink O.
Uncertainty-aware prognosis via deep gaussian process.
8. Scime L, Beuth J. Anomaly detection and classification IEEE Access. 2021;9:123517-123527.
in a laser powder bed additive manufacturing process
using a trained computer vision algorithm. Addit Manuf. doi: 10.1109/ACCESS.2021.3110049
2018;19:114-126. 19. Fan Z, Lu M, Huang H. Selective laser melting of alumina:
doi: 10.1016/j.addma.2017.11.009 A single track study. Ceram Int. 2018;44(8):9484-9493.
9. Okaro IA, Jayasinghe S, Sutcliffe C, Black K, Paoletti P, doi: 10.1016/j.ceramint.2018.02.166
Green PL. Automatic fault detection for laser powder-bed 20. Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S,
fusion using semi-supervised machine learning. Addit Smurov I. Energy input effect on morphology and
Manuf. 2019;27:42-53. microstructure of selective laser melting single
doi: 10.1016/j.addma.2019.01.006 track from metallic powder. J Mater Process Technol.
2013;213(4):606-613.
10. Yuan B, Giera B, Guss G, Matthews M, McMains S. Semi-
supervised convolutional neural networks for in-situ video doi: 10.1016/j.jmatprotec.2012.11.014
monitoring of selective laser melting. In: 2019 IEEE Winter 21. Yang J, Liu G, Zhu W, et al. High-precision and ultraspeed
Conference on Applications of Computer Vision (WACV). monitoring of melt-pool morphology in laser-directed
United States: IEEE; 2019. p. 744-753. energy deposition using deep learning. Addit Manuf Front.
doi: 10.1109/WACV.2019.00084 2025;4(2):200199.
11. Yuan B, Guss GM, Wilson AC, et al. Machine-learning- doi: 10.1016/j.amf.2025.200199
Volume 4 Issue 3 (2025) 18 doi: 10.36922/MSAM025200030

