Page 92 - MSAM-4-3
P. 92

Materials Science in Additive Manufacturing                            Interpretable GP melt track prediction



               2020;368(6491):660-665.                            based monitoring of laser powder bed fusion.  Adv Mater
                                                                  Technol. 2018;3(12):1800136.
               doi: 10.1126/science.aay7830
            2.   Fang Q, Tan Z, Li H, et al. In-situ capture of melt pool signature      doi: 10.1002/admt.201800136
               in selective laser melting using U-Net-based convolutional   12.  Mojahed Yazdi R, Imani F, Yang H. A  hybrid deep
               neural network. J Manuf Process. 2021;68:347-355.  learning model of process-build interactions in additive
                                                                  manufacturing. J Manuf Syst. 2020;57:460-468.
               doi: 10.1016/j.jmapro.2021.05.052
            3.   Yang L, Lo L, Ding S, Özel T. Monitoring and detection      doi: 10.1016/j.jmsy.2020.11.001
               of meltpool and spatter regions in laser powder bed   13.  Lopez F, Witherell P, Lane B. Identifying uncertainty in laser
               fusion  of  super  alloy  Inconel  625.  Prog Addit Manuf.   powder bed fusion additive manufacturing models. J Mech
               2020;5(4):367-378.                                 Des. 2016;138(11):114502.
               doi: 10.1007/s40964-020-00140-8                    doi: 10.1115/1.4034103
            4.   Liu J, Wei B, Chang H, Li J, Yang G. Review of visual   14.  Mahmoudi  M,  Ezzat  A,  Elwany  A.  Layerwise  anomaly
               measurement methods for metal vaporization processes in laser   detection in laser powder-bed fusion metal additive
               powder bed fusion. Micromachines (Basel). 2023;14(7):1351.  manufacturing. J Manuf Sci Eng. 2019;141(3):031002.
               doi: 10.3390/mi14071351                            doi: 10.1115/1.4042108
            5.   Forien JB, Calta NP, DePond PJ, Guss GM, Roehling TT,   15.  Gaikwad A, Giera B, Guss GM, Forien JB, Matthews MJ,
               Matthews  MJ.  Detecting keyhole pore defects and   Rao  P. Heterogeneous  sensing  and  scientific machine
               monitoring process signatures during laser powder bed   learning for quality assurance in laser powder bed fusion - a
               fusion: A correlation between in situ pyrometry and ex situ   single-track study. Addit Manuf. 2020;36:101659.
               X-ray radiography. Addit Manuf. 2020;35:101336.
                                                                  doi: 10.1016/j.addma.2020.101659
               doi: 10.1016/j.addma.2020.101336
                                                               16.  Guo K, Qiao L, Huang Z, Anwer N, Cao Y. A computational
            6.   Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR,   model of melt pool morphology for selective laser melting
               Marufuzzaman M, Bian L. In-situ monitoring of melt pool   process. Int J Adv Manuf Technol. 2022;121(3-4):1651-1673.
               images for porosity prediction in directed energy deposition
               processes. IISE Trans. 2018;51(5):437-455.         doi: 10.1007/s00170-022-09366-y
               doi: 10.1080/24725854.2017.1417656              17.  Zhang H, Vallabh CK, Zhao X. Registration and fusion
                                                                  of large-scale melt pool temperature and morphology
            7.   Khanzadeh M, Dantin M, Tian W, Priddy MW, Doude H,   monitoring data demonstrated for surface topography
               Bian L. Fast prediction of thermal data stream for direct   prediction in LPBF. Addit Manuf. 2022;58:103075.
               laser deposition processes using network-based tensor
               regression. J Manuf Sci Eng. 2021;144(4):041004.     doi: 10.1016/j.addma.2022.103075
               doi: 10.1115/1.4052207                          18.  Biggio L, Wieland A, Chao MA, Kastanis I, Fink O.
                                                                  Uncertainty-aware prognosis via deep gaussian process.
            8.   Scime L, Beuth J. Anomaly detection and classification   IEEE Access. 2021;9:123517-123527.
               in a laser powder  bed additive manufacturing process
               using a trained computer vision algorithm.  Addit Manuf.      doi: 10.1109/ACCESS.2021.3110049
               2018;19:114-126.                                19.  Fan Z, Lu M, Huang H. Selective laser melting of alumina:
               doi: 10.1016/j.addma.2017.11.009                   A single track study. Ceram Int. 2018;44(8):9484-9493.

            9.   Okaro IA, Jayasinghe S, Sutcliffe C, Black K, Paoletti P,      doi: 10.1016/j.ceramint.2018.02.166
               Green PL. Automatic fault detection for laser powder-bed   20.  Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson  S,
               fusion using semi-supervised machine learning.  Addit   Smurov I. Energy input effect on morphology and
               Manuf. 2019;27:42-53.                              microstructure  of  selective  laser  melting  single
               doi: 10.1016/j.addma.2019.01.006                   track  from  metallic  powder.  J  Mater Process Technol.
                                                                  2013;213(4):606-613.
            10.  Yuan B, Giera B, Guss G, Matthews M, McMains S. Semi-
               supervised convolutional neural networks for in-situ video      doi: 10.1016/j.jmatprotec.2012.11.014
               monitoring of selective laser melting. In: 2019 IEEE Winter   21.  Yang J, Liu G, Zhu W, et al. High-precision and ultraspeed
               Conference on Applications of Computer Vision (WACV).   monitoring of melt-pool morphology in laser-directed
               United States: IEEE; 2019. p. 744-753.             energy deposition using deep learning. Addit Manuf Front.
               doi: 10.1109/WACV.2019.00084                       2025;4(2):200199.
            11.  Yuan  B, Guss  GM,  Wilson  AC,  et  al.  Machine-learning-     doi: 10.1016/j.amf.2025.200199


            Volume 4 Issue 3 (2025)                         18                        doi: 10.36922/MSAM025200030
   87   88   89   90   91   92   93   94   95   96   97