Page 35 - TD-3-1
P. 35

Tumor Discovery                                                       AI uncovers tumor spatial organization



            semi-supervised methods, generative adversarial neural   References
            networks,  and  graph-based deep  learning have  shown   1.   Wang X, Fan J. Spatiotemporal molecular medicine: A new
            promise for improving the accuracy and effectiveness of   era of clinical and translational medicine. Clin Transl Med.
            spatial clustering in organizational analysis.        2021;11(1):e294.
            Acknowledgments                                       doi: 10.1002/ctm2.294

            We thank BioRender (biorender.com) for providing   2.   Wang X. Clinical trans-omics: An integration of clinical
            technical support in drawing the figures.             phenomes with molecular multiomics.  Cell Biol. Toxicol.
                                                                  2018;34:163-166.
            Funding                                               doi: 10.1007/s10565-018-9431-3
            This work was supported in part by the National Key R&D   3.   Rao A, Barkley D, França GS,  et al. Exploring tissue
            Programs (NKPs) of China (Grant No. 2022YFC3601800)   architecture using spatial transcriptomics.  Nature.
            [M.Y.]; the Science and Technology Research Program of   2021;596:211-220.
            Chongqing Municipal Education Commission (Grant No.      doi: 10.1038/s41586-021-03634-9
            KJZD-K202300105) [T.L.]; Chongqing medical scientific
            research  project (Joint  project of  Chongqing  Health   4.   Eng CHL, Lawson M, Zhu Q,  et al. Transcriptome-scale
                                                                  super-resolved imaging in tissues by RNA seqFISH+.
            Commission and Science and Technology Bureau) (Grant   Nature. 2019;568:235-239.
            No. 2024QNXM004) [T.L.].
                                                                  doi: 10.1038/s41586-019-1049-y
            Conflict of interest                               5.   Chen KH, Boettiger AN, Moffitt JR,  et al. RNA imaging.

            The authors declare that they have no competing interests.  Spatially resolved, highly multiplexed RNA profiling in
                                                                  single cells. Science. 2015;348:aaa6090.
            Author contributions                                  doi: 10.1016/B978-0-12-822824-1.00002-X

            Conceptualization: Mingzhu Yin                     6.   Codeluppi S, Borm LE, Zeisel A, et al. Spatial organization
            Formal analysis: Jiangnan Liao                        of the somatosensory cortex revealed by osmFISH.  Nat
            Investigation: Jinxin Ye, Chunlan Hu                  Methods. 2018;15:932-935.
            Methodology: Teng Liu, Zongbo Zhang                   doi: 10.1038/s41592-018-0175-z
            Writing – original draft: Teng Liu, Zhuomiao Ye
            Writing – review & editing: Jinxin Ye, Mingzhu Yin  7.   Ghorbani S, Jelinek E, Jain R, et al. Versican promotes T helper
                                                                  17 cytotoxic inflammation and impedes oligodendrocyte
            Ethics approval and consent to participate            precursor cell remyelination. Nat Commun. 2022;13:2445.
                                                                  doi: 10.1038/s41467-022-30032-0
            Not applicable.
                                                               8.   Stickels RR, Murray E, Kumar P,  et al. Highly sensitive
            Consent for publication                               spatial  transcriptomics  at  near-cellular  resolution  with
                                                                  Slide-seqV2. Nat Biotechnol. 2021;39:313-319.
            Not applicable.
                                                                  doi: 10.1038/s41587-020-0739-1
            Availability of data                               9.   Janesick A, Shelansky R, Gottscho AD, et al. High resolution
            The data can be downloaded from the provided links.   mapping of the tumor microenvironment using integrated
            Human DLPFC: the primary source: https://www.nature.  single-cell, spatial and in situ analysis.  Nat Commun.
            com/articles/s41593-020-00787-0;  the  pre-processed  2023;14:8353.
            source:  https://github.com/LieberInstitute/spatialLIBD);     doi: 10.1038/s41467-023-43458-x
            Human breast cancer: the primary source: https://  10.  Chen A, Liao S, Cheng M,  et al. Spatiotemporal
            www.10xgenomics.com/resources/datasets/human-breast-  transcriptomic atlas of mouse organogenesis using DNA
            cancer-block-a-section-1-1-standard-1-1-0;  the  pre-  nanoball-patterned arrays. Cell. 2022;185:1777-1792.e21.
            processed source: https://github.com/JinmiaoChenLab/     doi: 10.1016/j.cell.2022.04.003
            SEDR_analyses/); and  Human  breast cancer  from  10x
            Xenium: the  primary  source:  https://www.10xgenomics.  11.  Williams CG, Lee HJ, Asatsuma T, et al. An introduction
            com/products/xenium-in-situ/preview-dataset-human-    to spatial transcriptomics for biomedical research. Genome
            breast; https://squidpy.readthedocs.io/en/stable/notebooks/  Med. 2022;14:68.
            tutorials/tutorial_xenium.html                        doi: 10.1186/s13073-022-01075-1



            Volume 3 Issue 1 (2024)                         9                          https://doi.org/10.36922/td.2049
   30   31   32   33   34   35   36   37   38   39   40